Define the function f ( n ) where n is a nonnegative integer satisfying f ( 0 ) = 1 and f ( n ) is defined for n > 0 as f ( n ) = n × i = 0 ∑ n − 1 f ( i ) .
Let 2 k be the highest power of 2 that divides f ( 2 0 ) . Find 2 k .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The following are the values of f ( n ) for 0 ≤ n ≤ 2 0 (I did it with a spreadsheet).
n 0 1 2 3 4 5 6 7 8 9 1 0 f ( n ) 1 1 4 1 8 9 6 6 0 0 4 3 2 0 3 5 2 8 0 3 2 2 5 6 0 3 2 6 5 9 2 0 3 6 2 8 8 0 0 0 n ! f ( n ) 1 1 2 3 4 5 6 7 8 9 1 0 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 f ( n ) 4 3 9 0 8 4 8 0 0 5 7 4 8 0 1 9 2 0 0 8 0 9 5 1 2 7 0 4 0 0 1 2 2 0 4 9 6 0 7 6 8 0 0 1 9 6 1 5 1 1 5 5 2 0 0 0 0 3 3 4 7 6 4 6 3 8 2 0 8 0 0 0 6 0 4 6 6 8 6 2 7 7 6 3 2 0 0 0 1 1 5 2 4 2 7 2 6 7 0 3 1 0 4 0 0 0 2 3 1 1 2 5 6 9 0 7 7 6 7 8 1 0 0 0 0 4 8 6 5 8 0 4 0 1 6 3 5 3 2 8 0 0 0 0 0 n ! f ( n ) 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
It can be seen that f ( n ) = n ˙ n ! ⇒ f ( 2 0 ) = 2 0 ˙ 2 0 !
The highest power-of-2 divisor of 2 0 is 4 = 2 2 ,
The exponent of the highest power-of-2 divisor of 2 0 ! is given by:
p = i = 1 ∑ ∞ ⌊ 2 i 2 0 ⌋ = ⌊ 2 2 0 ⌋ + ⌊ r 4 2 0 ⌋ + ⌊ 8 2 0 ⌋ + ⌊ 1 6 2 0 ⌋ = 1 0 + 5 + 2 + 1 = 1 8
Therefore, the largest power-of-2 divisor of f ( 2 0 ) is: 2 2 ˙ 2 1 8 = 2 2 0 = ( 2 1 0 ) 2
⇒ m = 2 1 0 = 1 0 2 4
tmas Q!uite tuogh one!! @siddharth bhatt
Log in to reply
Ya, it was!
Problem Loading...
Note Loading...
Set Loading...
f ( n ) = n × ∑ i = 0 n − 1 f ( i ) = n [ f ( 0 ) + f ( 1 ) + . . . + f ( n − 1 ) ] n f ( n ) = f ( 0 ) + f ( 1 ) + . . . + f ( n − 1 ) f ( n + 1 ) = ( n + 1 ) ∑ i = 0 n f ( i ) = ( n + 1 ) [ f ( 0 ) + f ( 1 ) + . . . + f ( n − 1 ) + f ( n ) ] = ( n + 1 ) ( n f ( n ) + f ( n ) ) = f ( n ) ( ( n + 1 ) ( n 1 + 1 ) ) = f ( n ) ( n n 2 + 2 n + 1 ) = f ( n ) n ( n + 1 ) 2 ∴ f ( n ) = n − 1 n 2 f ( n − 1 ) = n − 1 n 2 n − 2 ( n − 1 ) 2 f ( n − 2 ) = n − 1 n 2 n − 2 ( n − 1 ) 2 . . . 1 2 2 f ( 0 ) = n 2 ( n − 1 ) ( n − 2 ) . . . ( 2 ) ( 1 ) = n . n ! ∴ f ( 2 0 ) = 2 0 . 2 0 ! 2 0 = 2 2 . 5 2 0 ! = 2 0 . 1 9 . 1 8 . . . . 2 . 1 i t h a s 1 0 e v e n n u m b e r s ( 2 1 0 ) t h o s e 1 0 e v e n a f t e r d i v i d i n g b y 2 w i l l b e 5 e v e n n u m b e r s ( 2 5 ) a n d t h o s e 5 w i l l b e 2 e v e n n u m b e r s ( 2 2 ) a n d t h e n 1 e v e n ( 2 ) p = 1 0 + 5 + 2 + 1 = 1 8 t h i s g i v e n b y p = ∑ i = 1 ∞ ⌊ 2 i 2 0 ⌋ = 1 8 ∴ m 2 = 2 1 8 + 2 = 2 2 0 ⇒ m = 2 1 0 = 1 0 2 4