My problems #7

Algebra Level 5

Define the function f ( n ) f(n) where n n is a nonnegative integer satisfying f ( 0 ) = 1 f(0) = 1 and f ( n ) f(n) is defined for n > 0 n>0 as f ( n ) = n × i = 0 n 1 f ( i ) f(n) = n\times{\displaystyle\sum_{i=0}^{n-1}\ f(i)} .

Let 2 k 2^k be the highest power of 2 that divides f ( 20 ) f(20) . Find 2 k \sqrt{ 2^k} .


The answer is 1024.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Basem Afifi
Mar 23, 2015

f ( n ) = n × i = 0 n 1 f ( i ) = n [ f ( 0 ) + f ( 1 ) + . . . + f ( n 1 ) ] f ( n ) n = f ( 0 ) + f ( 1 ) + . . . + f ( n 1 ) f ( n + 1 ) = ( n + 1 ) i = 0 n f ( i ) = ( n + 1 ) [ f ( 0 ) + f ( 1 ) + . . . + f ( n 1 ) + f ( n ) ] = ( n + 1 ) ( f ( n ) n + f ( n ) ) = f ( n ) ( ( n + 1 ) ( 1 n + 1 ) ) = f ( n ) ( n 2 + 2 n + 1 n ) = f ( n ) ( n + 1 ) 2 n f ( n ) = n 2 n 1 f ( n 1 ) = n 2 n 1 ( n 1 ) 2 n 2 f ( n 2 ) = n 2 n 1 ( n 1 ) 2 n 2 . . . 2 2 1 f ( 0 ) = n 2 ( n 1 ) ( n 2 ) . . . ( 2 ) ( 1 ) = n . n ! f ( 20 ) = 20 . 20 ! 20 = 2 2 . 5 20 ! = 20.19.18....2.1 i t h a s 10 e v e n n u m b e r s ( 2 10 ) t h o s e 10 e v e n a f t e r d i v i d i n g b y 2 w i l l b e 5 e v e n n u m b e r s ( 2 5 ) a n d t h o s e 5 w i l l b e 2 e v e n n u m b e r s ( 2 2 ) a n d t h e n 1 e v e n ( 2 ) p = 10 + 5 + 2 + 1 = 18 t h i s g i v e n b y p = i = 1 20 2 i = 18 m 2 = 2 18 + 2 = 2 20 m = 2 10 = 1024 f\left( n \right) =n\times \sum _{ i=0 }^{ n-1 }{ f\left( i \right) } \\ \qquad =n\quad \left[ f\left( 0 \right) +f\left( 1 \right) +\quad ...\quad +f\left( n-1 \right) \right] \\ \frac { f\left( n \right) }{ n } =\quad f\left( 0 \right) +f\left( 1 \right) +\quad ...\quad +f\left( n-1 \right) \\ f\left( n+1 \right) =\quad \left( n+1 \right) \sum _{ i=0 }^{ n }{ f\left( i \right) } \\ \qquad \qquad =\quad \left( n+1 \right) \left[ f\left( 0 \right) +f\left( 1 \right) +\quad ...\quad +f\left( n-1 \right) +f\left( n \right) \right] \\ \qquad \qquad =\quad \left( n+1 \right) \left( \frac { f\left( n \right) }{ n } +f\left( n \right) \right) \\ \qquad \qquad =\quad f\left( n \right) \left( \left( n+1 \right) \left( \frac { 1 }{ n } +1 \right) \right) \\ \qquad \qquad =\quad f\left( n \right) \left( \frac { { n }^{ 2 }+2n+1 }{ n } \right) =f\left( n \right) \quad \frac { { \left( n+1 \right) }^{ 2 } }{ n } \\ \therefore \quad f\left( n \right) =\frac { { n }^{ 2 } }{ n-1 } f\left( n-1 \right) \\ \qquad \qquad =\frac { { n }^{ 2 } }{ n-1 } \frac { { \left( n-1 \right) }^{ 2 } }{ n-2 } f\left( n-2 \right) \\ \qquad \qquad =\frac { { n }^{ 2 } }{ n-1 } \frac { { \left( n-1 \right) }^{ 2 } }{ n-2 } \quad ...\quad \frac { { 2 }^{ 2 } }{ 1 } f\left( 0 \right) \\ \qquad \qquad ={ n }^{ 2 }\left( n-1 \right) \left( n-2 \right) \quad ...\quad \left( 2 \right) \left( 1 \right) =n\quad .\quad n!\\ \therefore \quad f\left( 20 \right) =\quad 20\quad .\quad 20!\\ 20\quad =\quad { 2 }^{ 2 }.5\\ 20!\quad =\quad 20.19.18....2.1\quad it\quad has\quad 10\quad even\quad numbers\quad ({ 2 }^{ 10 })\\ those\quad 10\quad even\quad after\quad dividing\quad by\quad 2\quad will\quad be\quad 5\quad even\quad numbers({ 2 }^{ 5 })\\ and\quad those\quad 5\quad will\quad be\quad 2\quad even\quad numbers({ 2 }^{ 2 })\quad and\quad \quad then\quad 1\quad even\quad (2)\\ p=10+5+2+1=18\\ this\quad given\quad by\quad p=\sum _{ i=1 }^{ \infty }{ \left\lfloor \frac { 20 }{ { 2 }^{ i } } \right\rfloor } =18\\ \therefore \quad { m }^{ 2 }=\quad { 2 }^{ 18\quad +\quad 2 }\quad =\quad { 2 }^{ 20 }\quad \Rightarrow \quad \boxed { m=\quad { 2 }^{ 10 }=\quad 1024 }

The following are the values of f ( n ) f(n) for 0 n 20 0 \le n \le 20 (I did it with a spreadsheet).

n f ( n ) f ( n ) n ! n f ( n ) f ( n ) n ! 0 1 1 11 439084800 11 1 1 1 12 5748019200 12 2 4 2 13 80951270400 13 3 18 3 14 1220496076800 14 4 96 4 15 19615115520000 15 5 600 5 16 334764638208000 16 6 4320 6 17 6046686277632000 17 7 35280 7 18 115242726703104000 18 8 322560 8 19 2311256907767810000 19 9 3265920 9 20 48658040163532800000 20 10 36288000 10 \begin{array} {rrrcrrr} n & f(n) & \dfrac {f(n)}{n!} &|& n & f(n) & \dfrac {f(n)}{n!} \\ \hline \\ 0 & 1 & 1 &|& 11 & 439084800 & 11 \\ 1 & 1 & 1 &|& 12 & 5748019200 & 12 \\ 2 & 4 & 2 &|& 13 & 80951270400 & 13 \\ 3 & 18 & 3 &|& 14 & 1220496076800 & 14 \\ 4 & 96 & 4 &|& 15 & 19615115520000 & 15 \\ 5 & 600 & 5 &|& 16 & 334764638208000 & 16 \\ 6 & 4320 & 6 &|& 17 & 6046686277632000 & 17 \\ 7 & 35280 & 7 &|& 18 & 115242726703104000 & 18 \\ 8 & 322560 & 8 &|& 19 & 2311256907767810000 & 19 \\ 9 & 3265920 & 9 &|& 20 & 48658040163532800000 & 20 \\ 10 & 36288000 & 10 &|& & & \end{array}

It can be seen that f ( n ) = n ˙ n ! f ( 20 ) = 20 ˙ 20 ! f(n) = n\dot{}n!\quad \Rightarrow f(20) = 20\dot{} 20!

The highest power-of-2 divisor of 20 20 is 4 = 2 2 4=2^2 ,

The exponent of the highest power-of-2 divisor of 20 ! 20! is given by:

p = i = 1 20 2 i = 20 2 + 20 r 4 + 20 8 + 20 16 = 10 + 5 + 2 + 1 = 18 \displaystyle \begin{aligned} p & = \sum _{i=1} ^\infty {\lfloor \frac {20}{2^i} \rfloor} \\ & = \lfloor \frac {20}{2} \rfloor + \lfloor \frac {20}{r4} \rfloor + \lfloor \frac {20}{8} \rfloor + \lfloor \frac {20}{16} \rfloor \\ & = 10 + 5 + 2 + 1 \\ & = 18 \end{aligned}

Therefore, the largest power-of-2 divisor of f ( 20 ) f(20) is: 2 2 ˙ 2 18 = 2 20 = ( 2 10 ) 2 2^2\dot{}2^{18} = 2^{20} = \left( 2^{10} \right)^2

m = 2 10 = 1024 \Rightarrow m = 2^{10} = \boxed{1024}

tmas Q!uite tuogh one!! @siddharth bhatt

Parth Lohomi - 6 years, 3 months ago

Log in to reply

Ya, it was!

siddharth bhatt - 6 years, 3 months ago

Log in to reply

Yes, I got it by trial and error.

Chew-Seong Cheong - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...