My Quadratics

Level pending

If

/frac{1}{a}(a+b-c) /frac{1}{a}(a-b-c) /frac{1}{a}(a-b+c) /frac{1}{c}(c-b+a)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tony Sprinkle
Jan 5, 2015

a x 2 + b x + c = ( x α ) ( x β ) ax^2 + bx + c = (x - \alpha)(x - \beta)

Let:

α = b + b 2 4 a c 2 a and β = b b 2 4 a c 2 a \alpha =\frac{-b + \sqrt{b^2 - 4ac}}{2a}\quad\quad\text{and}\quad\quad\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}

Thus:

1 + α = 2 a b + b 2 4 a c 2 a and 1 + β = 2 a b b 2 4 a c 2 a 1+ \alpha =\frac{2a - b + \sqrt{b^2 - 4ac}}{2a}\quad\quad\text{and}\quad\quad 1 + \beta = \frac{2a -b - \sqrt{b^2 - 4ac}}{2a}

Multiplying these two expressions together and simplifying gives the answer:

a b + c a \boxed{\dfrac{a - b + c}{a}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...