My third integration problem

Calculus Level 3

0 π 4 3 4 cos ( 2 x ) + cos ( 4 x ) 3 + 4 cos ( 2 x ) + cos ( 4 x ) d x \large \displaystyle \int_{0}^{\frac{\pi}{4}} \dfrac{3-4\cos(2x) + \cos(4x)}{3+4\cos(2x)+\cos(4x)} \, \text{ d}x

If the integral above is equal to π a b c \dfrac{\pi}{a} - \dfrac{b}{c} , where b b and c c are coprime positive integers, find a + b + c a+b+c .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tubagus Dhafin
Dec 18, 2015

Because cos 4 x = 2 cos 2 2 x 1 \cos 4x=2\cos^2 2x-1 we can get 3 4 cos 2 x + cos 4 x = 2 4 cos 2 x + cos 2 2 x = 2 ( cos 2 x 1 ) 2 3-4\cos 2x+ \cos 4x=2-4\cos 2x+\cos^2 2x=2(\cos 2x -1)^2 3 + 4 cos 2 x + cos 4 x = 2 + 4 cos 2 x + cos 2 2 x = 2 ( cos 2 x + 1 ) 2 3+4\cos 2x+ \cos 4x=2+4\cos 2x+\cos^2 2x=2(\cos 2x +1)^2 because cos 2 x = 2 cos 2 x 1 = 1 2 sin 2 x \cos 2x=2\cos^2 x-1=1-2\sin^2x so 3 4 cos 2 x + cos 4 x = 2 ( cos 2 x 1 ) 2 = 2 ( 2 sin 2 x ) 2 = 4 sin 4 x 3-4\cos 2x+ \cos 4x=2(\cos 2x -1)^2=2(-2\sin^2 x)^2=4\sin^4 x 3 + 4 cos 2 x + cos 4 x = 2 ( cos 2 x + 1 ) 2 = 2 ( 2 cos 2 x ) 2 = 4 cos 4 x 3+4\cos 2x+ \cos 4x=2(\cos 2x +1)^2=2(2\cos^2 x)^2=4\cos^4 x so the integral change to 0 π 4 4 sin 4 x 4 cos 4 x d x = 0 π 4 ( tan 2 x ) ( tan 2 x ) d x = 0 π 4 ( tan 2 x ) ( 1 1 cos 2 x ) d x \int^{\frac{\pi}{4}}_0 \frac{4\sin^4 x}{4\cos^4 x} dx = \int^{\frac{\pi}{4}}_0 (\tan^2 x) (\tan^2 x) dx =\int^{\frac{\pi}{4}}_0 (\tan^2 x)\left(1-\frac{1}{\cos^2 x}\right) dx = 0 π 4 ( tan 2 x ) d x 0 π 4 ( tan 2 x ) cos 2 x d x = 0 π 4 1 1 cos 2 x d x 0 π 4 ( tan 2 x ) d ( tan x ) =\int^{\frac{\pi}{4}}_0 (\tan^2 x) dx-\int^{\frac{\pi}{4}}_0 \frac{(\tan^2 x)}{\cos^2 x} dx =\int^{\frac{\pi}{4}}_01-\frac{1}{\cos^2 x} dx-\int^{\frac{\pi}{4}}_0(\tan^2 x) d(\tan x) = x tan x 0 π 4 + tan 3 x 3 0 π 4 = π 4 1 + 1 3 = π 4 2 3 = \left. x-\tan x \right|^{\frac{\pi}{4}}_0+\left.\frac{\tan^3x}{3} \right|^{\frac{\pi}{4}}_0=\frac{\pi}{4}-1+\frac{1}{3}=\frac{\pi}{4}-\frac{2}{3} so we can get a = 4 , b = 2 , c = 3 a=4, b=2,c=3 and a + b + c = 9 a+b+c=9

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...