My, what large powers you have!

Algebra Level 3

In the expansion of ( 2 x + 3 ) 20 (2x+3)^{20} , the coefficient of x n x^n is twice that of x n + 1 x^{n+1} . Find n n .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Noel Lo
May 18, 2015

( 2 x + 3 ) 20 = . . . . + [ 20 C n ] ( 2 x ) n 3 20 n + [ 20 C ( n + 1 ) ] ( 2 x ) n + 1 3 19 n + . . . (2x+3)^{20} = ....+[20Cn] (2x)^{n} 3^{20-n} + [20C(n+1)] (2x)^{n+1} 3^{19-n}+...

[ 20 C n ] 2 n 3 20 n = 2 × [ 20 C ( n + 1 ) ] 2 n + 1 3 19 n [20Cn] 2^n 3^{20-n} = 2 \times [20C(n+1)] 2^{n+1} 3^{19-n}

20 19 . . . . ( 20 ( n 1 ) ) n ! 2 n 2 2 n + 1 ( 3 20 n 3 19 n ) = 20 19 . . . . . ( 20 n ) ( n + 1 ) ! \frac{20*19*....*(20-(n-1))}{n!} \frac{2^n}{2 * 2^{n+1}} (\frac{3^{20-n}}{3^{19-n}}) = \frac{20*19*.....(20-n)}{(n+1)!}

20 19 . . . . ( 20 ( n 1 ) ) n ! 3 2 2 = × 20 19 . . . . ( 20 ( n 1 ) ) ( 20 n ) ( n + 1 ) n ! \frac{20*19*....*(20-(n-1))}{n!} \frac{3}{2*2}= \times \frac{20*19*....*(20-(n-1))(20-n)}{(n+1)*n!}

20 n n + 1 = 3 4 \frac{20-n}{n+1} = \frac{3}{4}

3 ( n + 1 ) = 4 ( 20 n ) 3(n+1) = 4(20-n)

3 n + 3 = 80 4 n 3n+3 = 80-4n

( 3 + 4 ) n = 80 3 (3+4)n= 80-3

7 n = 77 7n = 77

n = 11 n =\boxed{11}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...