Mysterious connection (2)

Geometry Level 4

A regular heptadecagon P 1 P 2 P 3 P 17 P_{1}P_{2}P_{3}\cdots P_{17} is inscribed in a unit circle. Find n = 2 17 P 1 P n \displaystyle\prod_{n=2}^{17} {P_{1}P_{n}} .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jon Haussmann
Jun 29, 2018

More generally, let n 3 n \ge 3 be a positive integer. Let ω = e 2 π i / n \omega = e^{2 \pi i/n} , so ω \omega is a primitive n n th root of unity. Then the roots of x n 1 = 0 x^n - 1 = 0 are x = 1 x = 1 , ω \omega , ω 2 \omega^2 , \dots , ω n 1 \omega^{n - 1} , so x n 1 = ( x 1 ) ( x ω ) ( x ω 2 ) ( x ω n 1 ) . x^n - 1 = (x - 1)(x - \omega)(x - \omega^2) \dotsm (x - \omega^{n - 1}). Also, x n 1 = ( x 1 ) ( x n 1 + x n 2 + + x + 1 ) , x^n - 1 = (x - 1)(x^{n - 1} + x^{n - 2} + \dots + x + 1), so ( x ω ) ( x ω 2 ) ( x ω n 1 ) = x n 1 + x n 2 + + x + 1. (x - \omega)(x - \omega^2) \dotsm (x - \omega^{n - 1}) = x^{n - 1} + x^{n - 2} + \dots + x + 1. Setting x = 1 x = 1 , we get ( 1 ω ) ( 1 ω 2 ) ( 1 ω n 1 ) = n . (1 - \omega)(1 - \omega^2) \dotsm (1 - \omega^{n - 1}) = n.

For 1 k n 1 \le k \le n , let P k P_k be the point corresponding to the complex number ω k 1 \omega^{k - 1} . Then P 1 P k = 1 ω k 1 , P_1 P_k = |1 - \omega^{k - 1}|, so k = 2 n P 1 P k = k = 2 n 1 ω k 1 = k = 2 n ( 1 ω k 1 ) = n . \prod_{k = 2}^n P_1 P_k = \prod_{k = 2}^n |1 - \omega^{k - 1}| = \left| \prod_{k = 2}^n (1 - \omega^{k - 1}) \right| = n.

Mark Hennings
Jun 28, 2018

Note that sin ( 2 n + 1 ) x = I m ( ( cos x + i sin x ) 2 n + 1 ) = j = 0 n ( 2 n + 1 2 j + 1 ) ( 1 ) j cos 2 n 2 j x sin 2 j + 1 x = sin x j = 0 n ( 1 ) j ( 2 n + 1 2 j + 1 ) sin 2 j x ( 1 sin 2 x ) n j = sin x F n ( sin 2 x ) \begin{aligned} \sin(2n+1)x & = \; \mathrm{Im}\big((\cos x + i \sin x)^{2n+1}\big) \; = \; \sum_{j=0}^n \binom{2n+1}{2j+1}(-1)^j \cos^{2n-2j}x\sin^{2j+1}x \\ & = \; \sin x \sum_{j=0}^n (-1)^j \binom{2n+1}{2j+1} \sin^{2j}x (1 - \sin^2x)^{n-j} \; = \; \sin x F_n(\sin^2x) \end{aligned} where F n ( X ) = j = 0 n ( 1 ) j ( 2 n + 1 2 j + 1 ) X j ( 1 X ) n j F_n(X) \; = \; \sum_{j=0}^n(-1)^j\binom{2n+1}{2j+1}X^j(1-X)^{n-j} is a polynomial of degree n n with leading coefficient ( 1 ) n j = 0 n ( 2 n + 1 2 j + 1 ) = ( 1 ) n 2 2 n (-1)^n\sum_{j=0}^n \binom{2n+1}{2j+1} =(-1)^n2^{2n} and constant term ( 2 n + 1 1 ) = 2 n + 1 \binom{2n+1}{1} = 2n+1 . It is clear from the definition of F n F_n that the roots of F n F_n are sin 2 j π 2 n + 1 \sin^2\tfrac{j\pi}{2n+1} for 1 j n 1 \le j \le n , so we deduce that j = 1 n sin 2 j π 2 n + 1 = 2 2 n ( 2 n + 1 ) \prod_{j=1}^n \sin^2\tfrac{j\pi}{2n+1} \; = \; 2^{-2n}(2n+1) Thus we deduce that n = 2 17 P 1 P n = 2 16 n = 1 16 sin n π 17 = 2 16 n = 1 8 sin 2 n π 17 = 17 \prod_{n=2}^{17}P_1P_n \; = \; 2^{16}\prod_{n=1}^{16} \sin \tfrac{n\pi}{17} \; = \; 2^{16}\prod_{n=1}^8 \sin^2\tfrac{n\pi}{17} \; = \; \boxed{17}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...