Mysterious connection

Geometry Level 5

A regular heptadecagon P 1 P 2 P 3 P 17 P_{1}P_{2}P_{3}\cdots P_{17} is inscribed in a unit circle. Find n = 2 17 P 1 P n 2 \displaystyle\sum_{n=2}^{17} {P_{1}P_{n}}^2 .


The answer is 34.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Moehring
Jun 18, 2018

Note that the points 1 , e 2 π i / 17 , e 4 π i / 17 , , e 32 π i / 17 1, e^{2\pi i/17}, e^{4\pi i/17}, \ldots, e^{32\pi i/17} form the vertices of a regular heptadecagon inscribed in the unit circle of the complex plane.

If we identify P 1 = 1 P_1 = 1 , then n = 2 17 P 1 P n 2 = n = 1 16 e 2 n π i / 17 1 2 = n = 1 16 ( e 2 n π i / 17 1 ) ( e 2 n π i / 17 1 ) = n = 1 16 ( 2 e 2 n π i / 17 e 2 n π i / 17 ) = 32 2 n = 1 16 e 2 n π i / 17 = 32 2 ( 1 ) = 34 \begin{aligned}\sum_{n=2}^{17}P_1P_n^2 &= \sum_{n=1}^{16}\left|e^{2n\pi i/17} - 1\right|^2 \\ &= \sum_{n=1}^{16}\left(e^{2n\pi i/17} - 1\right)\left(e^{-2n\pi i/17} - 1\right) \\ &= \sum_{n=1}^{16} \left(2 - e^{2n\pi i/17} - e^{-2n\pi i/17}\right) \\ &= 32 - 2\sum_{n=1}^{16} e^{2n\pi i/17} \\ &= 32 - 2(-1) \\ &= \boxed{34}\end{aligned}

Ron Nissim
Jun 19, 2018

Call the origin of the unit circle O O . Applying the Law of Cosines to triangle Δ P 1 O P n \Delta P_1 O P_n we obtain ( P 1 P n ) 2 = 2 2 c o s ( 2 ( n 1 ) π 17 ) (P_1P_n)^2=2-2cos(\frac{2(n-1)\pi}{17}) . So the sum in question is n = 2 17 ( 2 2 c o s ( 2 ( n 1 ) π 17 ) ) = 32 2 n = 1 16 c o s ( 2 n π 17 ) \sum_{n=2}^{17} (2-2cos(\frac{2(n-1)\pi}{17})) = 32-2\sum_{n=1}^{16} cos(\frac{2n\pi}{17}) . But we know by symmetry of the cosine function that n = 1 17 c o s ( 2 n π 17 ) = 0 \sum_{n=1}^{17} cos(\frac{2n\pi}{17})=0 (i.e. using the unit circle), and so n = 1 16 c o s ( 2 n π 17 ) = 1 \sum_{n=1}^{16} cos(\frac{2n\pi}{17})=-1 . Thus the sum in question evaluates to 34 \boxed{34} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...