Mysterious Recurring Decimals

The decimal representation of the fraction 1 998001 \frac { 1 }{ 998001 } has a very interesting regularity, as shown below:

1 998001 = 0. 000 001 002 003 . . . 999 first 3 × 999 = 2997 digits . . . \large \dfrac { 1 }{ 998001 } = 0.\, \underbrace{000\ 001\ 002\ 003\ ...\ 999}_{\text{first }\, 3\times 999=2997\, \text{ digits}}\, ...

If we keep separating the decimal places--from left to right--into a group of 3-digit numbers for a total of 999 times until 999 appears, we have 000 , 001 , 002 , 003 , . . . , 999. 000,\ 001,\ 002,\ 003,\,...,\ 999. But, in fact, the regularity is not perfect as there is one number missing in this sequence. What is the missing number?


Note: If you think it's 007, write 7. If you think it's 077, write 77. If you think it's 777, write 777.


The answer is 998.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Read more about these series Here

Representing the fraction as

1 998001 = 1 999 2 = 1 1000 2 × 1000 2 ( 1000 1 ) 2 = 1 1000 2 × 1 ( 1 1 1000 ) 2 \frac { 1 }{ 998001} =\frac { 1 }{ { 999 }^{ 2 } } =\frac { 1 }{ { 1000 }^{ 2 } } \times \frac { { 1000 }^{ 2 } }{ { \left( 1000-1 \right) }^{ 2 } } =\frac { 1 }{ { 1000 }^{ 2 } } \times \frac { 1 }{ { \left( 1-\frac { 1 }{ 1000 } \right) }^{ 2 } }

We know that if x < 1 |x|<1

1 ( 1 x ) 2 = n = 0 n x n 1 = n = 1 n x n 1 = 1 + 2 x + 3 x 2 + 4 x 3 + . . . . \frac { 1 }{ (1-x)^{ 2 } } =\displaystyle \sum _{ n=0 }^{ \infty } nx^{ n-1 }=\displaystyle \sum _{ n=1 }^{ \infty } nx^{ n-1 }=1+2x+3{ x }^{ 2 }+4{ x }^{ 3 }+....

From Taylor Series

if we put x = 1 1000000 x=\frac { 1 }{ 1000000} in the above equation and multiply by 1 1000 2 \frac {1}{{ 1000 }^{ 2 }} we will get

1 998001 \frac { 1 }{ 998001} = = 1 998001 = 1 1000 2 [ 1 + 2 1000 + 3 1000 2 + 4 1000 3 + 5 1000 4 . . . ] = 1 1000 2 + 2 1000 3 + 3 1000 4 + 4 1000 5 + 5 1000 6 . . . \frac { 1 }{ 998001 } =\frac { 1 }{ { 1000 }^{ 2 } } \left[ 1+\frac { 2 }{ { 1000 } } +\frac { 3 }{ { 1000 }^{ 2 } } +\frac { 4 }{ { 1000 }^{ 3 } } +\frac { 5 }{ { 1000 }^{ 4 } } ... \right] \\ =\frac { 1 }{ { 1000 }^{ 2 } } +\frac { 2 }{ { 1000 }^{ 3 } } +\frac { 3 }{ { 1000 }^{ 4 } } +\frac { 4 }{ { 1000 }^{ 5 } } +\frac { 5 }{ { 1000 }^{ 6 } } ...

= 0.000001 + 0.000000002 + . . . + 0.00000....997 + 0.00000....000998 + 0.00000....000000999 + 0.00000....000000001000 + . . . . . =\quad 0.000001\\ +\quad 0.000000002\\ +...\\ +0.00000....997\\ +0.00000....000998\\ +0.00000....000000999\\ +0.00000....000000001000\\ +.....

= 0.000001 + 0.000000002 + . . . + 0.00000....997 + 0.00000....000999 + 0.00000....000000000001 + . . . . . =\quad 0.000001\\ +\quad 0.000000002\\ +...\\ +0.00000....997\\ +0.00000....000999\\ +0.00000....000000000001\\ +.....

This all sums up and gives us 0.000001002003.....996997999000001002..... 0.000001002003.....996997999000001002.....

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...