Mysterious Sum

If we have the expression

1 + 2 x + 3 x 2 + 4 x 3 + 5 x 4 + 1+ 2x + 3x^2 + 4x^3 + 5x^4 + \cdots The value of 1 + 0.2 + 0.03 + 0.004 + 1+0.2+0.03+0.004+\cdots can be represented as a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 181.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the value of the infinite sum be S S , which can be represented by S = a b S = \dfrac{a}{b} , then we have:

S = 1 + 0.2 + 0.03 + 0.004 + . . . = n = 1 n x n 1 where x = 0.1 = n = 1 d x n d x = d d x n = 1 x n = d d x ( x 1 x ) = 1 1 x + x ( 1 x ) 2 = 1 x + x ( 1 x ) 2 = 1 ( 1 x ) 2 = 1 ( 1 0.1 ) 2 = 1 0.81 = 100 81 \begin{aligned} S & = 1+0.2 + 0.03 + 0.004 +... \\ & = \sum_{n=1}^\infty nx^{n-1} \quad \quad \small \color{#3D99F6}{\text{where }x = 0.1} \\ & = \sum_{n=1}^\infty \frac{dx^n}{dx} = \frac{d}{dx} \sum_{n=1}^\infty x^n = \frac{d}{dx} \left(\frac{x}{1-x}\right) \\ & = \frac{1}{1-x} + \frac{x}{(1-x)^2} = \frac{1-x+x}{(1-x)^2} = \frac{1}{(1-x)^2} \\ & = \frac{1}{(1-0.1)^2} = \frac{1}{0.81} = \frac{100}{81} \end{aligned}

a + b = 100 + 81 = 181 \Rightarrow a + b = 100 + 81 = \boxed{181}

Sarja onAP - GP . Käyttää kaavan avulla voidaan ratkaista

DUHHHH

Using binomial theoram given expression is (1-0.1)^2= 100/81

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...