mysterious symmetry

Calculus Level 2

0 1 1 x 21 20 1 x 20 21 d x = ? \displaystyle \large \int_{0}^{1} \sqrt[20]{1-x^{21}} - \sqrt[21]{1-x^{20}} \ dx \ = \ ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Vilakshan Gupta
Apr 22, 2020

An easier solution than @Karan Chatrath ' s solution would be:


Note that the functions f ( x ) = ( 1 x 21 ) 1 / 20 f(x)=(1-x^{21})^{1/20} and g ( x ) = ( 1 x 20 ) 1 / 21 g(x)=(1-x^{20})^{1/21} are inverse functions.

There exists a very good property between a function and it's inverse i.e, in general, it holds true that a b f ( x ) d x + f ( a ) f ( b ) f 1 ( x ) d x = b f ( b ) a f ( a ) \int_{a}^{b} f(x) dx + \int_{f(a)}^{f(b)} f^{-1}(x) dx = bf(b)-af(a)

This can be visualised by considering the area under the graph made by these functions and the coordinate axes.

Hence, in our case , a = 0 , b = 1 , f ( a ) = 1 , f ( b ) = 0 a=0 , b=1 , f(a)=1 , f(b)=0 and hence the answer is simply 0 \boxed{0} .

Thank you for sharing this alternate solution

Karan Chatrath - 1 year, 1 month ago

Log in to reply

You're welcome!

Vilakshan Gupta - 1 year, 1 month ago
Karan Chatrath
Apr 22, 2020

Consider the integral:

I ( a , b ) = 0 1 ( 1 x a ) 1 / b d x I(a,b) = \int_{0}^{1} \left(1-x^a\right)^{1/b} \ dx

Taking x a / 2 = sin t \blue{x^{a/2} = \sin{t}} and transforming the integral leads to the following. Intermediate simplifications and substitutions are left out:

I ( a , b ) = 2 a 0 π / 2 ( cos t ) b + 2 b ( sin t ) 2 a a d t I(a,b) = \frac{2}{a} \int_{0}^{\pi/2} \left(\cos{t}\right)^{\frac{b+2}{b}} \left(\sin{t}\right)^{\frac{2-a}{a}} \ dt

Recalling that the formula for the general integral:

0 π / 2 ( cos t ) m ( sin t ) n d t = Γ ( m + 1 2 ) Γ ( n + 1 2 ) 2 Γ ( m + n + 2 2 ) \int_{0}^{\pi/2} \left(\cos{t}\right)^m \left(\sin{t}\right)^n \ dt = \frac{\Gamma\left(\frac{m+1}{2}\right)\Gamma\left(\frac{n+1}{2}\right)}{2\Gamma\left(\frac{m+n+2}{2}\right)}

Where: Γ ( x ) \Gamma(x) is the Gamma function. Applying this formula for the considered integral results in:

I ( a , b ) = 1 a Γ ( b + 1 b ) Γ ( 1 a ) Γ ( a + b + a b a b ) I(a,b) = \frac{\frac{1}{a}\Gamma\left(\frac{b+1}{b}\right)\Gamma\left(\frac{1}{a}\right)}{\Gamma\left(\frac{a+b+ab}{ab}\right)} I ( a , b ) = Γ ( b + 1 b ) Γ ( 1 + a a ) Γ ( a + b + a b a b ) 1 a Γ ( 1 a ) = Γ ( 1 + a a ) \implies \boxed{I(a,b) =\frac{\Gamma\left(\frac{b+1}{b}\right)\Gamma\left(\frac{1+a}{a}\right)}{\Gamma\left(\frac{a+b+ab}{ab}\right)}} \ \because \frac{1}{a}\Gamma\left(\frac{1}{a}\right)=\Gamma\left(\frac{1+a}{a}\right)

The above step uses the property: n Γ ( n ) = Γ ( n + 1 ) \red{n\Gamma(n) = \Gamma(n+1)} . This implies that: I ( a , b ) = I ( b , a ) I(a,b)=I(b,a) 0 1 ( 1 x 21 ) 1 / 20 d x = 0 1 ( 1 x 20 ) 1 / 21 d x \implies \int_{0}^{1} \left(1-x^{21}\right)^{1/20} \ dx = \int_{0}^{1} \left(1-x^{20}\right)^{1/21} \ dx 0 1 ( ( 1 x 21 ) 1 / 20 ( 1 x 20 ) 1 / 21 ) d x = 0 \implies \boxed{\int_{0}^{1} \left(\left(1-x^{21}\right)^{1/20}-\left(1-x^{20}\right)^{1/21}\right) \ dx=0}

Chew-Seong Cheong
Apr 23, 2020

Similar solution as @Karan Chatrath 's

I = 0 1 ( 1 x 21 20 1 x 20 21 ) d x = 0 1 1 x 21 20 d x 0 1 1 x 20 21 d x Let u = x 21 d u = 21 x 20 d x = 0 1 u 20 21 ( 1 u ) 1 20 21 d u 0 1 u 19 20 ( 1 v ) 1 21 20 d v and v = x 20 d v = 20 x 19 d x = B ( 1 21 , 21 20 ) 21 B ( 1 20 , 22 21 ) 20 Beta function B ( m , n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) = Γ ( 1 21 ) Γ ( 21 20 ) 21 Γ ( 461 420 ) Γ ( 1 20 ) Γ ( 22 21 ) 20 Γ ( 461 420 ) Gamma function Γ ( 1 + s ) = s Γ ( s ) = Γ ( 1 21 ) Γ ( 1 20 ) 21 20 Γ ( 461 420 ) Γ ( 1 20 ) Γ ( 1 21 ) 21 20 Γ ( 461 420 ) = 0 \begin{aligned} I & = \int_0^1 \left(\sqrt[20]{1-x^{21}} - \sqrt[21]{1-x^{20}} \right) dx \\ & = \blue{\int_0^1 \sqrt[20]{1-x^{21}} \ dx} - \red{\int_0^1 \sqrt[21]{1-x^{20}} \ dx} & \small \blue{\text{Let }u = x^{21} \implies du = 21 x^{20} dx} \\ & = \blue{\int_0^1 \frac {u^{-\frac {20}{21}}(1-u)^\frac 1{20}}{21} du} - \red{\int_0^1 \frac {u^{-\frac {19}{20}}(1-v)^\frac 1{21}}{20} dv} & \small \red{\text{and }v = x^{20} \implies dv = 20 x^{19} dx} \\ & = \frac {B \left(\frac 1{21}, \frac {21}{20} \right)}{21} - \frac {B \left(\frac 1{20}, \frac {22}{21} \right)}{20} & \small \blue{\text{Beta function }B (m,n) = \frac {\Gamma(m) \Gamma(n)}{\Gamma(m+n)}} \\ & = \frac {\Gamma\left(\frac 1{21}\right) \blue{\Gamma \left(\frac {21}{20} \right)}}{21 \Gamma \left(\frac {461}{420}\right)} - \frac {\Gamma\left(\frac 1{20}\right) \blue{\Gamma \left(\frac {22}{21} \right)}}{20 \Gamma \left(\frac {461}{420}\right)} & \small \blue{\text{Gamma function }\Gamma (1+s) = s\Gamma (s)} \\ & = \frac {\Gamma\left(\frac 1{21}\right) \blue{\Gamma \left(\frac 1{20} \right)}}{21 \cdot \blue{20} \Gamma \left(\frac {461}{420}\right)} - \frac {\Gamma\left(\frac 1{20}\right) \blue{\Gamma \left(\frac 1{21} \right)}}{\blue{21} \cdot 20 \Gamma \left(\frac {461}{420}\right)} \\ & = \boxed 0 \end{aligned}


References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...