n n equal distances

Calculus Level 3

If a particle travels n n equal distances with speeds v 1 , v 2 , , v n v_1,v_2,\ldots,v_n , find the average speed v v of a particle in terms of v 1 , v 2 , , v n v_1, v_2,\ldots, v_n .

v = v 1 + v 2 + + v n n v=\frac{v_1+v_2+\cdots+v_n}{n} v = v 1 2 + v 2 2 + + v n 2 v=\sqrt{v_1^{2}+v_2^{2}+\cdots+v_n^{2}} 1 v = 1 n ( 1 v 1 + 1 v 2 + + 1 v n ) \frac{1}{v}=\frac{1}{n} \left(\frac{1}{v_1}+\frac{1}{v_2}+\cdots+\frac{1}{v_n}\right) v = n v 1 v 2 v 3 v 1 + v 2 + + v n v=\frac{nv_1v_2\cdots v_3}{v_1+v_2+\cdots+v_n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sparsh Sarode
May 15, 2016

We calculate​ the average velocity as the total distance over total time:

v a v g = n s s v 1 + s v 2 + . . . + s v n v_{avg}=\frac{ns}{\frac{s}{v_1}+\frac{s}{v_2}+...+\frac{s}{v_n}}

1 v a v g = 1 n ( 1 v 1 + 1 v 2 + . . . + 1 v n ) \frac{1}{v_{avg}}=\frac{1}{n}(\frac{1}{v_1}+\frac{1}{v_2}+...+\frac{1}{v_n})

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...