N is not no

Algebra Level 2

N = 5 + 2 + 5 2 5 + 1 3 2 2 = ? \large N = \dfrac{\sqrt{\sqrt{5} +2} + \sqrt{\sqrt{5} -2}}{\sqrt{\sqrt{5} +1}}-\sqrt{3-2\sqrt{2}} =\, ?

5 2 \frac{\sqrt{5}}{2} 1 2 5 + 1 \frac{2}{\sqrt{\sqrt{5}}+1} 2 2 1 2\sqrt{2} - 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dhruv Tyagi
May 6, 2016

N = N = 5 + 2 + 5 2 5 + 1 \frac{\sqrt{\sqrt{5} +2} + \sqrt{\sqrt{5} -2}}{\sqrt{\sqrt{5} +1}} - 3 2 2 \sqrt{3-2\sqrt{2}}

N + 3 2 2 = N+ \sqrt{3-2\sqrt{2}} = 5 + 2 + 5 2 5 + 1 \frac{\sqrt{\sqrt{5} +2} + \sqrt{\sqrt{5} -2}}{\sqrt{\sqrt{5} +1}}

Squaring both sides: ( N + 3 2 2 ) 2 = (N+ \sqrt{3-2\sqrt{2}})^{2} = ( 5 + 2 + 5 2 5 + 1 ) 2 (\frac{\sqrt{\sqrt{5} +2} + \sqrt{\sqrt{5} -2}}{\sqrt{\sqrt{5} +1}})^{2}

On Solving: ( N + 3 2 2 ) 2 = (N+ \sqrt{3-2\sqrt{2}})^{2} = 2 2

N + 3 2 2 = N+ \sqrt{3-2\sqrt{2}} = 2 \sqrt{2}

N 2 = N-\sqrt{2} = 3 2 2 -\sqrt{3-2\sqrt{2}}

Squaring both sides: ( N 2 ) 2 = (N-\sqrt{2})^{2} = ( 3 2 2 ) 2 (-\sqrt{3-2\sqrt{2}})^{2}

( N ) 2 2 ( N ) ( 2 ) + 2 = (N)^{2}-2(N)(\sqrt{2})+2 = 3 2 2 3-2\sqrt{2}

( N ) 2 2 ( N ) ( 2 ) = (N)^{2}-2(N)(\sqrt{2}) = 3 2 2 2 3-2\sqrt{2} - 2

( N ) 2 2 ( N ) ( 2 ) = (N)^{2}-2(N)(\sqrt{2}) = 1 2 2 1-2\sqrt{2}

If we substitute N by 1; we notice that N = 1 is the solution of this equation. But still:

( N ) 2 2 ( N ) ( 2 ) = (N)^{2}-2(N)(\sqrt{2}) = 1 2 2 1-2\sqrt{2}

( N ) 2 2 ( N ) ( 2 ) 1 + 2 2 = (N)^{2}-2(N)(\sqrt{2})-1 + 2\sqrt{2} = 0 0

( N ) 2 1 2 ( N ) ( 2 ) + 2 2 = (N)^{2}-1-2(N)(\sqrt{2}) + 2\sqrt{2} = 0 0

( N + 1 ) ( N 1 ) 2 2 ( N 1 ) = (N+1)(N-1) - 2\sqrt{2}(N-1) = 0 0

( N 1 ) ( N + 1 2 2 ) = 0 (N-1)(N+1- 2\sqrt{2}) = 0

N 1 = 0 N-1=0 \Rightarrow N = 1 N=1 which satisfies the equation

How do you get (N+root over(3-2 root2))^2=2

সামিন সালেক - 5 years, 1 month ago

Log in to reply

( 5 + 2 + 5 2 5 + 1 ) 2 (\frac{\sqrt{\sqrt{5} +2} + \sqrt{\sqrt{5} -2}}{\sqrt{\sqrt{5} +1}})^{2}

( 5 + 2 ) 2 + 2 ( 5 + 2 ) ( 5 2 ) + ( 5 2 ) 2 ( 5 + 1 ) 2 \frac{(\sqrt{\sqrt{5} + 2})^{2} + 2\sqrt{(\sqrt{5} + 2)(\sqrt{5} - 2)}+(\sqrt{\sqrt{5} - 2})^{2}}{(\sqrt{\sqrt{5} + 1})^{2}} On using identity ( a + b ) 2 (a+b)^{2}

5 + 2 + 2 ( 5 + 2 ) ( 5 2 ) + 5 2 5 + 1 \frac{\sqrt{5} + 2 + 2\sqrt{(\sqrt{5} + 2)(\sqrt{5} - 2)}+\sqrt{5} - 2}{\sqrt{5} + 1}

5 + 2 + 2 ( 5 ) 2 2 2 + 5 2 5 + 1 \frac{\sqrt{5} + 2 + 2\sqrt{(\sqrt{5})^{2}- 2^{2}}+\sqrt{5} - 2}{\sqrt{5} + 1} On using identity ( a + b ) ( a b ) (a+b)(a-b)

5 + 2 + 2 5 4 + 5 2 5 + 1 \frac{\sqrt{5} + 2 + 2\sqrt{5-4}+\sqrt{5} - 2}{\sqrt{5} + 1}

5 + 2 + 2 1 + 5 2 5 + 1 \frac{\sqrt{5} + 2 + 2\sqrt{1}+\sqrt{5} - 2}{\sqrt{5} + 1}

5 + 2 + 2 + 5 2 5 + 1 \frac{\sqrt{5} + 2 + 2+\sqrt{5} - 2}{\sqrt{5} + 1}

5 + 2 + 5 5 + 1 \frac{\sqrt{5} + 2+\sqrt{5}}{\sqrt{5} + 1}

2 5 + 2 5 + 1 \frac{2\sqrt{5} + 2}{\sqrt{5} + 1}

2 ( 5 + 1 ) 5 + 1 \frac{2(\sqrt{5} + 1)}{\sqrt{5} + 1}

Now we cancel ( 5 + 1 ) (\sqrt{5} + 1) from the numerator and denominator and we get 2 \boxed{2}

Dhruv Tyagi - 5 years, 1 month ago

Your solution yields another possibility:

N = 2 2 1 N=2\sqrt{2} -1

You didn't show why this is not a possible answer

Hung Woei Neoh - 5 years, 1 month ago

Log in to reply

Try to put its value. I haven't tried though. Its one of the options too.

Dhruv Tyagi - 5 years, 1 month ago
Hung Woei Neoh
May 7, 2016

N = 5 + 2 + 5 2 5 + 1 3 2 2 N = \dfrac{\sqrt{\sqrt{5} + 2} + \sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5} + 1}} - \sqrt{3 - 2\sqrt{2}}

Multiply 5 1 \sqrt{\sqrt{5}-1} in the fraction:

N = ( 5 1 ) ( 5 + 2 + 5 2 ) ( 5 1 ) ( 5 + 1 ) 3 2 2 N = ( 5 1 ) ( 5 + 2 ) + ( 5 1 ) ( 5 2 ) ( 5 1 ) ( 5 + 1 ) 3 2 2 N = 5 5 + 2 5 2 + 5 5 2 5 + 2 5 1 3 2 2 N = 1 2 ( 3 + 5 + 7 3 5 ) 3 2 2 N = \dfrac{ \left( \sqrt{\sqrt{5}-1} \right) \left( \sqrt{\sqrt{5} + 2} + \sqrt{\sqrt{5}-2} \right)}{ \left( \sqrt{\sqrt{5}-1} \right) \left( \sqrt{\sqrt{5} + 1} \right)} - \sqrt{3 - 2\sqrt{2}}\\ N = \dfrac{ \sqrt{ \left( \sqrt{5} - 1 \right) \left( \sqrt{5} + 2 \right) } + \sqrt{ \left( \sqrt{5} - 1 \right) \left( \sqrt{5} - 2 \right) }}{\sqrt{ \left( \sqrt{5} - 1 \right) \left( \sqrt{5} + 1 \right)}} - \sqrt{3 - 2\sqrt{2}}\\ N = \dfrac{ \sqrt{ 5 - \sqrt{5} + 2\sqrt{5} - 2 } + \sqrt{ 5 - \sqrt{5} - 2\sqrt{5} + 2 }}{\sqrt{5-1}} - \sqrt{3 - 2\sqrt{2}}\\ N = \dfrac{1}{2} \left( \sqrt{3 + \sqrt{5}} + \sqrt{7 - 3\sqrt{5}} \right) - \sqrt{3 - 2\sqrt{2}}\\

Now, we want to write the following:

3 + 5 = a + b \sqrt{3+ \sqrt{5}} = \sqrt{a} + \sqrt{b} where a , b > 0 a,b > 0 . Square it:

3 + 5 = a + b + 2 a b 3+\sqrt{5} = a + b + 2\sqrt{ab}

By comparison:

3 = a + b 5 = 2 a b 5 = 4 a b b = 5 4 a 3 = a+b\\ \sqrt{5} = 2\sqrt{ab}\\ 5 = 4ab\\ b=\dfrac{5}{4a}

Substitute it in:

3 = a + 5 4 a 12 a = 4 a 2 + 5 4 a 2 12 a + 5 = 0 ( 2 a 1 ) ( 2 a 5 ) = 0 a = 1 2 , 5 2 3 = a + \dfrac{5}{4a}\\ 12a = 4a^2 + 5\\ 4a^2 - 12a + 5 = 0\\ (2a - 1)(2a - 5) = 0\\ a=\dfrac{1}{2},\; \dfrac{5}{2}

Then, b = 5 2 , 1 2 b = \dfrac{5}{2}, \; \dfrac{1}{2}

Therefore, 3 + 5 = 1 2 + 5 2 \sqrt{3+ \sqrt{5}} = \sqrt{\dfrac{1}{2}} + \sqrt{\dfrac{5}{2}}

Do the same for the following:

7 3 5 = c d \sqrt{7 - 3\sqrt{5}} = \sqrt{c} - \sqrt{d} where c > d > 0 c>d>0 and

3 2 2 = e f \sqrt{3 - 2\sqrt{2}} = \sqrt{e} - \sqrt{f} where e > f > 0 e>f>0

I won't show the steps for these two anymore. The method is the same, and you should get:

7 3 5 = 9 2 5 2 \sqrt{7 - 3\sqrt{5}} = \sqrt{\dfrac{9}{2}} - \sqrt{\dfrac{5}{2}}

3 2 2 = 2 1 \sqrt{3 - 2\sqrt{2}} = \sqrt{2} - \sqrt{1}

Substitute these 3 values into N N :

N = 1 2 ( 1 2 + 5 2 + 9 2 5 2 ) ( 2 1 ) N = 1 2 ( 1 2 + 3 2 ) + 1 2 N = 1 2 ( 4 2 ) + 1 2 N = 2 + 1 2 N = 1 N = \dfrac{1}{2} \left( \sqrt{\dfrac{1}{2}} + \sqrt{\dfrac{5}{2}} + \sqrt{\dfrac{9}{2}} - \sqrt{\dfrac{5}{2}} \right) - \left( \sqrt{2} - \sqrt{1} \right)\\ N = \dfrac{1}{2} \left( \dfrac{1}{\sqrt{2}} + \dfrac{3}{\sqrt{2}} \right) + 1 - \sqrt{2}\\ N = \dfrac{1}{2} \left( \dfrac{4}{\sqrt{2}} \right) + 1 - \sqrt{2}\\ N = \sqrt{2} + 1 - \sqrt{2}\\ N = \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...