N = 5 + 1 5 + 2 + 5 − 2 − 3 − 2 2 = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How do you get (N+root over(3-2 root2))^2=2
Log in to reply
( 5 + 1 5 + 2 + 5 − 2 ) 2
( 5 + 1 ) 2 ( 5 + 2 ) 2 + 2 ( 5 + 2 ) ( 5 − 2 ) + ( 5 − 2 ) 2 On using identity ( a + b ) 2
5 + 1 5 + 2 + 2 ( 5 + 2 ) ( 5 − 2 ) + 5 − 2
5 + 1 5 + 2 + 2 ( 5 ) 2 − 2 2 + 5 − 2 On using identity ( a + b ) ( a − b )
5 + 1 5 + 2 + 2 5 − 4 + 5 − 2
5 + 1 5 + 2 + 2 1 + 5 − 2
5 + 1 5 + 2 + 2 + 5 − 2
5 + 1 5 + 2 + 5
5 + 1 2 5 + 2
5 + 1 2 ( 5 + 1 )
Now we cancel ( 5 + 1 ) from the numerator and denominator and we get 2
Your solution yields another possibility:
N = 2 2 − 1
You didn't show why this is not a possible answer
Log in to reply
Try to put its value. I haven't tried though. Its one of the options too.
N = 5 + 1 5 + 2 + 5 − 2 − 3 − 2 2
Multiply 5 − 1 in the fraction:
N = ( 5 − 1 ) ( 5 + 1 ) ( 5 − 1 ) ( 5 + 2 + 5 − 2 ) − 3 − 2 2 N = ( 5 − 1 ) ( 5 + 1 ) ( 5 − 1 ) ( 5 + 2 ) + ( 5 − 1 ) ( 5 − 2 ) − 3 − 2 2 N = 5 − 1 5 − 5 + 2 5 − 2 + 5 − 5 − 2 5 + 2 − 3 − 2 2 N = 2 1 ( 3 + 5 + 7 − 3 5 ) − 3 − 2 2
Now, we want to write the following:
3 + 5 = a + b where a , b > 0 . Square it:
3 + 5 = a + b + 2 a b
By comparison:
3 = a + b 5 = 2 a b 5 = 4 a b b = 4 a 5
Substitute it in:
3 = a + 4 a 5 1 2 a = 4 a 2 + 5 4 a 2 − 1 2 a + 5 = 0 ( 2 a − 1 ) ( 2 a − 5 ) = 0 a = 2 1 , 2 5
Then, b = 2 5 , 2 1
Therefore, 3 + 5 = 2 1 + 2 5
Do the same for the following:
7 − 3 5 = c − d where c > d > 0 and
3 − 2 2 = e − f where e > f > 0
I won't show the steps for these two anymore. The method is the same, and you should get:
7 − 3 5 = 2 9 − 2 5
3 − 2 2 = 2 − 1
Substitute these 3 values into N :
N = 2 1 ( 2 1 + 2 5 + 2 9 − 2 5 ) − ( 2 − 1 ) N = 2 1 ( 2 1 + 2 3 ) + 1 − 2 N = 2 1 ( 2 4 ) + 1 − 2 N = 2 + 1 − 2 N = 1
Problem Loading...
Note Loading...
Set Loading...
N = 5 + 1 5 + 2 + 5 − 2 - 3 − 2 2
N + 3 − 2 2 = 5 + 1 5 + 2 + 5 − 2
Squaring both sides: ( N + 3 − 2 2 ) 2 = ( 5 + 1 5 + 2 + 5 − 2 ) 2
On Solving: ( N + 3 − 2 2 ) 2 = 2
N + 3 − 2 2 = 2
N − 2 = − 3 − 2 2
Squaring both sides: ( N − 2 ) 2 = ( − 3 − 2 2 ) 2
( N ) 2 − 2 ( N ) ( 2 ) + 2 = 3 − 2 2
( N ) 2 − 2 ( N ) ( 2 ) = 3 − 2 2 − 2
( N ) 2 − 2 ( N ) ( 2 ) = 1 − 2 2
If we substitute N by 1; we notice that N = 1 is the solution of this equation. But still:
( N ) 2 − 2 ( N ) ( 2 ) = 1 − 2 2
( N ) 2 − 2 ( N ) ( 2 ) − 1 + 2 2 = 0
( N ) 2 − 1 − 2 ( N ) ( 2 ) + 2 2 = 0
( N + 1 ) ( N − 1 ) − 2 2 ( N − 1 ) = 0
( N − 1 ) ( N + 1 − 2 2 ) = 0
N − 1 = 0 ⇒ N = 1 which satisfies the equation