n-Polygon

Geometry Level 4

Let A 1 A_{1} , A 2 A_{2} , A 3 A_{3} ,....... A n A_{n} be vertices of n sided regular polygon, such that 1 A 1 A 2 \frac{1}{A1A2} = 1 A 1 A 3 \frac{1}{A1A3} + 1 A 1 A 4 \frac{1}{A1A4} . Find the value of n.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arjen Vreugdenhil
Nov 19, 2015

If R R is the radius of the circumscribed circle, then A 1 A 2 = 2 R sin ( 36 0 2 n ) , \ A 1 A 3 = 2 R sin ( 2 36 0 2 n ) , \ A 1 A 4 = 2 R sin ( 3 36 0 2 n ) . A_1A_2 = 2R\sin\left(\frac{360^\circ}{2n}\right),\ \ \ A_1A_3 = 2R\sin\left(2\cdot\frac{360^\circ}{2n}\right),\ \ \ A_1A_4 = 2R\sin\left(3\cdot\frac{360^\circ}{2n}\right). We simplify this by writing θ = 36 0 / 2 n = 18 0 \theta = 360^\circ/2n = 180^\circ .

1 sin θ = 1 sin 2 θ + 1 sin 3 θ ; \frac{1}{\sin\theta} = \frac{1}{\sin2\theta} + \frac{1}{\sin3\theta}; 1 s = 1 2 s c + 1 4 s c 2 s ; s = sin θ , c = cos θ \frac1s = \frac1{2sc} + \frac1{4sc^2-s};\ \ \ \ \ s=\sin\theta,\ c = \cos\theta 1 = 1 2 c + 1 4 c 2 1 = 2 c ( 4 c 2 1 ) 2 c + 4 c 2 1 ; 1 = \frac1{2c} + \frac1{4c^2-1} = \frac{2c(4c^2-1)}{2c+4c^2-1}; 8 c 3 4 c 2 4 c + 1 = 0. 8c^3 - 4c^2 - 4c + 1 = 0. I solved this numerically and found c = cos θ = 0.90096887 ; θ = 25 5 7 ; c = \cos\theta = 0.90096887;\ \ \ \ \theta = 25{\tfrac5 7}^\circ; Therefore n = 18 0 25 5 7 = 7 . n = \frac{180^\circ}{25{\tfrac5 7}^\circ} = \boxed{7}.

W L O G l e t n g o n b e i n s c r i b e i n a n u n i t c i r c l e . L e t 36 0 o n = 2 X o , w h e r e n i s t h e n u m b e r o f s i d e s . A 1 A 2 = S i n X , A 1 A 3 = S i n 2 X = 2 s i n X C o s X , A 1 A 4 = S i n 3 X = 4 S i n 3 X + 3 S i n X = 1 4 C o s 3 X 1 A 1 A 2 = 1 A 1 A 3 + 1 A 1 A 4 1 S i n X = 1 2 S i n X C o s X + 1 S i n X ( 1 4 C o s 2 X ) S i n X 0 , m u l t i p l y i n g b y S i n X , a n d s i m p l i f y i n g w e g e t 8 C o s 3 X 4 C o s 2 X 4 C o s X + 1 = 0. S o l v i n g t h i s c u b i c a n d s e l e c t i n g t h e r e l e v a n t r o o t C o s X = 0.90096886. X = 25.71428676. n = 360 2 25.71428676 = 6.99999971. S o n = 7 WLOG\ let\ n\!-\!gon\ be\ inscribe\ in\ an\ unit\ circle.\\ Let\ \dfrac{360^o}n=2X^o, \ where\ n\ is\ the\ number\ of \ sides.\\ \therefore\ A_1A_2=SinX, \ \ \ A_1A_3=Sin2X=2sinX*CosX,\ \ \ A_1A_4=Sin3X= - 4Sin^3X+3SinX=1 - 4Cos^3X\\ \dfrac{1}{A_1A_2} =\dfrac{1}{A_1A_3} +\dfrac{1}{A_1A_4}\\ \implies\ \dfrac{1}{SinX} =\dfrac{1}{2SinXCosX} +\dfrac{1}{SinX(1 - 4Cos^2X)}\\ SinX\neq 0,\ \ \therefore\ multiplying\ by\ SinX,\ and \ simplifying \ we\ get\ \ 8*Cos^3X-4Cos^2X - 4CosX+1=0.\\ Solving\ this\ cubic\ and \ selecting\ the\ relevant\ root\ \ \ CosX=0.90096886.\\ \ \implies\ \ X=25.71428676. \ \ \therefore\ n=\dfrac{360}{2*25.71428676}= 6.99999971.\\ So\ \ n=\ \ \color{#D61F06}{7} )

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...