( n + 2 15 ) = 209 ( n 13 ) {{n+2} \choose 15}=209 \cdot {n \choose 13}

What positive integer n n satisfies ( n + 2 15 ) = 209 ( n 13 ) ? {{n+2} \choose 15}=209 \cdot {n \choose 13}?

206 206 209 209 208 208 207 207

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aquilino Madeira
Jul 16, 2015

( n + 2 15 ) = 209 × ( n 13 ) ( n + 2 ) ! 15 ! ( n + 2 15 ) ! = 209 × n ! 13 ! ( n 13 ) ! ( n + 2 ) ! 15 ! ( n 13 ) ! = 209 × n ! 13 ! ( n 13 ) ! ( n + 2 ) ! 15 ! = 209 × n ! 13 ! ( n + 2 ) ( n + 1 ) n ! 15 × 14 × 13 ! = 209 × n ! 13 ! ( n + 2 ) ( n + 1 ) 15 × 14 × 13 ! = 209 13 ! ( n + 2 ) ( n + 1 ) = 15 × 14 × 209 ( n + 2 ) ( n + 1 ) = 210 × 209 n = 208 \begin{array}{l} \left( \begin{array}{l} n + 2\\ \;\,15 \end{array} \right) = 209 \times \left( \begin{array}{l} \,n\\ 13 \end{array} \right)\\ \Leftrightarrow \frac{{(n + 2)!}}{{15!(n + 2 - 15)!}} = 209 \times \frac{{n!}}{{13!(n - 13)!}}\\ \Leftrightarrow \frac{{(n + 2)!}}{{15!(n - 13)!}} = 209 \times \frac{{n!}}{{13!(n - 13)!}}\\ \Leftrightarrow \frac{{(n + 2)!}}{{15!}} = 209 \times \frac{{n!}}{{13!}}\\ \Leftrightarrow \frac{{(n + 2)(n + 1)n!}}{{15 \times 14 \times 13!}} = \frac{{209 \times n!}}{{13!}}\\ \Leftrightarrow \frac{{(n + 2)(n + 1)}}{{15 \times 14 \times 13!}} = \frac{{209}}{{13!}}\\ \Leftrightarrow (n + 2)(n + 1) = 15 \times 14 \times 209\\ \Leftrightarrow (n + 2)(n + 1) = 210 \times 209\\ \Leftrightarrow n = 208 \end{array}

Ayan Bhuyan
Mar 29, 2014

n+2 choose 15 = 209* n choose 13 gives the equation n^2 + 3n - 43888= 0. Solving for n gives n = 208

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...