Napoleon's?

Geometry Level 5

Define triangle A B C ABC with A B = 55 AB=55 units, B C = 60 BC=60 units and A C = 49 AC=49 units. Let D , E D, E and F F be points outside the triangle such that triangles A B D ABD , B C E BCE and A C F ACF are equilateral. Points G , H G, H and I I are the centroids of the three equilateral triangles, respectively. Find the area of triangle G H I GHI .

Submit your answers up to three decimal places.


The answer is 1285.305.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jun Arro Estrella
Nov 22, 2015

Nice solution Mark! I've discovered a shorter formula as well!

I have made my own formula in finding the sides of the triangle formed by those centroids.. Let a , b a, b and c c be the sides of the triangle A B C ABC , d d be the side of triangle G H I GHI , we have 3 d 2 = 2 s 2 + ( 12 ( s ) ( s a ) ( s b ) ( s c ) ) 0.5 ( a b + b c + a c ) 3d^2=2s^2+(12(s)(s-a)(s-b)(s-c))^{0.5}-(ab +bc + ac) .

Let O be the circumcenter of triangle ABC and G, H, I those of equilateral triangles.
X, Y, Z are midpoint of BC, CA, AB respectively. R the circumradius of triangle ABC.
I n Δ A B C , S i n A = S i n { C o s 1 ( A B 2 + A C 2 B C 2 2 A B A C ) } = S i n { C o s 1 ( 4 9 2 + 5 5 2 6 0 2 2 49 55 ) } = 0.94087 S i n B = A C S i n A B C = 0.86246 a n d S i n C = 0.76837 I n q u a d r i l a t e r a l A Z O Y , A Z O = O Y A = 9 0 o . S i n G O I = S i n A , S i m i l a r l y S i n H O G = S i n B S i n I O H = S i n C . R = B C 2 S i n A = 31.8850. G Z a n d Z O a r e A B a t Z , G O i s a s t . l i n e . G O = G Z + Z O = r 3 + r c = R 2 ( A B 2 ) 2 + A B 2 T a n 30. G O = 31.885 0 2 ( 49 2 ) 2 + 49 2 1 3 = 34.5518. S i m i l a r l y I O = 32.051 H O = 28.1225. A r e a Δ G O I = 1 2 G O I O S i n A = 1 2 34.5518 32.051 0.94087. A r e a Δ G H I = A r e a Δ G O I + A r e a Δ H O G + A r e a Δ I O H . = 1 2 34.5518 32.051 0.94087 + 1 2 32.051 28.1225. 0.76837 + 1 2 28.1225. 34.5518 0.86246. A r e a Δ G H I = 1285.3047 In~\Delta~ABC,\\ SinA=Sin \left \{Cos^{-1}\left(\dfrac{AB^2+AC^2-BC^2}{2*AB*AC}\right) \right\}\\ =Sin \left \{Cos^{-1}\left(\dfrac{49^2+55^2-60^2}{2*49*55}\right) \right\}=\color{#3D99F6}{ 0.94087} \\ SinB=AC*\dfrac{SinA}{BC}= \color{#3D99F6}{ 0.86246}~~~~and~~~~~SinC= \color{#3D99F6}{ 0.76837}\\ In ~quadrilateral~AZOY, \angle~AZO=\angle~OYA =90^o.\\ \therefore~SinGOI=SinA,~~~Similarly~~~SinHOG=SinB~~~SinIOH=SinC.\\ R=\dfrac{BC}{2*SinA}= 31.8850.\\ GZ~and~ZO~are~\perp~AB~at ~~Z,~\therefore~GO~is~a~st.line.\\ \therefore~GO=GZ + ZO=r_3+r_c=\sqrt{R^2 - (\dfrac{AB}{2})^2 } + \dfrac{AB}{2}*Tan30.\\ GO= \sqrt{31.8850^2 - (\dfrac{49}{2})^2 } + \dfrac{49}{2}*\dfrac 1{\sqrt3}=\color{#D61F06}{34.5518}.\\ Similarly~~~IO=\color{#D61F06}{32.051}~~~~~~~HO=\color{#D61F06}{28.1225.}\\ Area ~\Delta~GOI= \dfrac 1 2 *GO*IO*SinA= \dfrac 1 2*34.5518* 32.051* 0.94087. \\ Area ~\Delta~GHI=Area ~\Delta~GOI+Area ~\Delta~HOG+Area ~\Delta~IOH. \\ = \dfrac 1 2*34.5518* 32.051* 0.94087+\dfrac 1 2* 32.051* 28.1225.*0.76837\\+\dfrac 1 2*28.1225.*34.5518* 0.86246.\\ Area ~\Delta~GHI=1285.3047
THIS PROBLEM CAN ALSO BE SOLVED AS UNDER. \text{THIS PROBLEM CAN ALSO BE SOLVED AS UNDER.}
After finding out angles A, B, and C, in degrees, adding 60 to them give us s I A G , G B H , H C I . I A = I C = 55 3 , G B = G A = 49 3 , H C = H B = 60 3 Apply Cos Rule to find the three sides. Knowing the three sides the area can be found by Hero’ Formula. \text{After finding out angles A, B, and C, in degrees, adding 60 to them give us}\\ \angle s~~~~~~~~~ IAG, ~~~~~~~~~GBH, ~~~~~~~~~HCI. \\ IA=IC=\dfrac{55}{\sqrt3}, ~~~ GB=GA=\dfrac{49}{\sqrt3 },~~~ HC=HB=\dfrac{60}{\sqrt3 }\\ \text{Apply Cos Rule to find the three sides.}\\ \text{Knowing the three sides the area can be found by Hero' Formula.}



Niranjan Khanderia - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...