Nasty Integral

Calculus Level 4

π π 2 x ( 1 + sin x ) 1 + cos 2 x d x \large \displaystyle\int_{-\pi}^{\pi} \dfrac{2x(1+\sin x)}{1+ \cos^2x} \, dx

The integral above has a closed form. Find the value of this closed form.

For your step of your calculation, take π = 3.14 \pi = 3.14 .

Round your answer to 2 decimal places.


The answer is 9.86.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jun 8, 2016

Call the integral R \large\mathscr{R} . π π 2 x 1 + cos 2 x d x = 0 Odd  Function + π π 2 x sin x 1 + cos 2 x d x Even Function \underbrace{\overbrace{\displaystyle\int_{-\pi}^{\pi} \dfrac{2x}{1+ \cos^2x }\mathrm{d}x}^{=0}}_{\text{Odd ~Function}} + \underbrace{ \displaystyle\int_{-\pi}^{\pi} \dfrac{2x\sin x}{1+ \cos^2x} \mathrm{d}x }_{\text{Even Function}}

= 4 0 π x sin x 1 + cos 2 x d x \large =4 \displaystyle\int_{0}^{\pi} \dfrac{x\sin x}{1+ \cos^2x} \mathrm{d}x

Use a b f ( x ) d x = a b f ( a + b x ) d x \small{\displaystyle\int_a^b f(x)\mathrm{d}x=\displaystyle\int_a^b f(a+b-x)\mathrm{d}x} .

R = 4 π 0 π π sin x 1 + cos 2 x d x 4 0 π x sin x 1 + cos 2 x d x R \implies \mathscr{R}= 4\pi\displaystyle\int_{0}^{\pi} \dfrac{\pi\sin x}{1+ \cos^2x} \mathrm{d}x-\underbrace{4 \displaystyle\int_{0}^{\pi} \dfrac{x\sin x}{1+ \cos^2x} \mathrm{d}x}_{\mathscr R}

R = 2 π 0 π sin x 1 + cos 2 x d x \large\implies \mathscr{R}=2\pi\displaystyle\int_{0}^{\pi} \dfrac{\sin x}{1+ \cos^2x} \mathrm{d}x

= [ 2 π tan 1 ( cos x ) ] π 0 \large =\left[2\pi\tan^{-1}\left(\cos x\right)\right]_{\pi}^0

= π 2 9.86 \Large =\pi^2\approx\boxed{\color{#007fff}{9.86}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...