Nasty integral

Calculus Level 3

We have the following identity for positive values of a a :

0 a 2 x 2 + a x d x = a 2 4 ( n 1 ln ( n 2 + n 3 ) ) \large \int_{0}^{\frac{a}{2}} \sqrt{x^{2}+ax} \text{ d}x=\frac{a^2}{4}\left(\sqrt{n_1}-\ln \left(\sqrt{n_2+\sqrt{n_3}}\right)\right)

where n 1 n_1 , n 2 n_2 , and n 3 n_3 are positive integers. What is the value of n 1 + n 2 + n 3 n_1+n_2+n_3 ?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alright this was a fun problem to solve! Anyway to the solution. I = 0 a / 2 x 2 + a x d x = 0 a / 2 ( x + a / 2 ) 2 a 2 / 4 d x x x + a / 2 I = a / 2 a x 2 a 2 / 4 d x x a 2 sec θ d x = a 2 sec θ tan θ d θ I = a 2 0 π / 3 a 2 4 ( sec 2 θ 1 ) sec θ tan θ d θ = a 2 4 0 π / 3 sec θ tan 2 θ d θ = a 2 4 [ 0 π / 3 sec 3 θ d θ 0 π / 3 sec θ d θ ] = a 2 4 [ I 1 I 2 ] I 1 = 0 π / 3 sec 3 θ d θ = sec θ tan θ 0 π / 3 0 π / 3 sec θ tan 2 θ d θ = 2 3 4 a 2 I I 2 = 0 π / 3 sec θ d θ = log sec θ + tan θ 0 π / 3 = log ( 2 + 3 ) I = a 2 4 [ 2 3 4 a 2 I log ( 2 + 3 ) ] = a 2 4 ( 2 3 log ( 2 + 3 ) ) I 2 I = a 2 4 ( 2 3 log ( 2 + 3 ) ) I = a 2 4 ( 3 1 2 log ( 2 + 3 ) ) I = a 2 4 ( 3 log ( 2 + 3 ) ) \begin{aligned} I&=\int^{a/2}_0\sqrt{x^2+ax}\;dx=\int^{a/2}_0\sqrt{(x+a/2)^2-a^2/4}\;dx\\ x&\mapsto x+a/2\\ \implies I&=\int^a_{a/2}\sqrt{x^2-a^2/4}\;dx&\\ x&\mapsto\frac a2\sec\theta\implies dx=\frac a2\sec\theta\tan\theta d\theta\\ \implies I&=\frac a2\int^{\pi/3}_0\sqrt{\frac {a^2}4\left(\sec^2\theta-1\right)}\sec\theta\tan\theta\;d\theta=\frac{a^2}4\int^{\pi/3}_0\sec\theta\tan^2\theta d\theta\\ &=\frac{a^2}4\left[\int^{\pi/3}_0\sec^3\theta d\theta-\int^{\pi/3}_0\sec\theta d\theta\right]=\frac{a^2}{4}\left[I_1-I_2\right]\\ I_1&=\int^{\pi/3}_0\sec^3\theta d\theta=\left|\sec\theta\tan\theta\right|^{\pi/3}_0-\int^{\pi/3}_0\sec\theta\tan^2\theta d\theta=2\sqrt3-\frac{4}{a^2}I\\ I_2&=\int^{\pi/3}_0\sec\theta d\theta=\left|\vphantom{\Large |}\log|\sec\theta+\tan\theta|\right|^{\pi/3}_0=\log(2+\sqrt3)\\ \implies I&=\frac{a^2}4\left[2\sqrt3-\frac4{a^2}I-\log(2+\sqrt{3})\right]=\frac{a^2}{4}\left(2\sqrt3-\log(2+\sqrt3)\right)-I\\ \implies2I&=\frac{a^2}{4}\left(2\sqrt3-\log(2+\sqrt3)\right)\\ \implies I&=\frac{a^2}4\left(\sqrt3-\frac12\log(2+\sqrt3)\right)\\ \implies I&=\frac{a^2}4\left(\sqrt3-\log\left(\sqrt{2+\sqrt3}\right)\right)\end{aligned} Therefore finally we have n 1 = 3 n_1=3 , n 2 = 2 n_2=2 and n 3 = 3 n_3=3 giving us n 1 + n 2 + n 3 = 8 n_1+n_2+n_3=\boxed{8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...