Nasty summation

Calculus Level 5

f ( x ) = x x x . . . \Large f(x) = x^{x^{x^{.^{.^{.}}}}}

If a = e e a = e^{-e} and b = e 1 / e b = e^{1/e} , let G ( n ) = a b a b i = 1 n f ( x i ) d x 1 d x n \displaystyle G(n) = \int_a^b \cdots \int_a^b \prod_{i=1}^n f(x_i)\ dx_1 \cdots dx_n for positive integers n n .

Find n = 1 50 G ( n ) \displaystyle \left \lfloor{\sum_{n =1}^{50}G(n)} \right \rfloor .


The answer is 282192.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akeel Howell
Jan 26, 2018

f ( x ) = x x x . . . \Large f(x) = x^{x^{x^{.^{.^{.}}}}} is the infinite power tower (tetration), which is continuous and differentiable in [ e e , e 1 / e ] [e^{-e},e^{1/e}] . The integral

a b a b i = 1 n f ( x i ) d x 1 d x n = i = 1 n a b f ( x i ) d x i = ( a b f ( x ) d x ) n \displaystyle \int_a^b \cdots \int_a^b \prod_{i=1}^n f(x_i) \ dx_1 \cdots dx_n = \prod_{i=1}^n \int_a^b f(x_i) \ dx_i = \left( \int_a^b f(x) \ dx \right)^n for a a and b b in the domain of f f .

Let I = a b f ( x ) d x G ( n ) = I n k = 1 n I k = I n + 1 I I 1 . ( Recalling from algebra that 1 + z + z 2 + + z n 1 = z n 1 z 1 ) \displaystyle I = \int_a^b f(x) \ dx \\ \displaystyle \implies G(n) = I^n \longrightarrow \sum_{k=1}^{n} I^k \ = \ \dfrac{I^{n+1}-I}{I-1}. \quad \left( \text{Recalling from algebra that } 1+z+z^2+\cdots+z^{n-1} = \dfrac{z^n-1}{z-1} \right)

Now we need only worry about evaluating I I . Recall that a b f ( x ) d x + f ( a ) f ( b ) f 1 ( x ) d x = b f ( b ) a f ( a ) \displaystyle \int_a^b f(x) \ dx + \int_{f(a)}^{f(b)} f^{-1}(x) \ dx = bf(b) - af(a) . For a = e e a = e^{-e} and b = e 1 / e b = e^{1/e} , f ( a ) = 1 e f(a) = \frac{1}{e} and f ( b ) = e f(b) = e .

1 / e e x 1 / x d x 2.658607452339433... ( e 1 / e ) e ( e e ) 1 e 2.658607452339433... I \displaystyle \int_{1/e}^e x^{1/x} \ dx \approx 2.658607452339433 ... \ \implies \left( e^{1/e} \right) e - \left( e^{-e} \right) \frac{1}{e} - 2.658607452339433 ... \approx I

So since I 1.2441313006514 n = 1 50 G ( n ) 282192.6725612... \displaystyle I \approx 1.2441313006514 \cdots \ \implies \ \sum_{n=1}^{50} G(n) \approx 282192.6725612... .

Hence, applying the greatest integer function yields 282192 \boxed{282192} .

how f(a)=1/e???

challapalli charan - 3 years, 4 months ago

Log in to reply

a = e e = ( 1 e ) e = ( 1 e ) 1 1 / e \displaystyle a = e^{-e} = \left( \dfrac{1}{e} \right)^e = \left( \dfrac{1}{e} \right)^{\dfrac{1}{1/e}} .

Since x = y 1 / y y = 1 e , x = e e x = y^{1/y} \ \implies y = \dfrac{1}{e}, x = e^{-e} .

Akeel Howell - 3 years, 4 months ago

Very well explained!

Vishruth Bharath - 3 years, 4 months ago

Log in to reply

Thank you!

Akeel Howell - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...