Nasty Triangles 3

Geometry Level 5

Given a circle and A B C \triangle ABC , the circle passes through A A and B B and intersects A B C \triangle ABC at point D D and E E . Extend A B AB and D E DE so that they intersect at point F F , connect line C F CF .

If A B = 3 AB=3 , A D = 1 AD=1 , D C = 2 DC=2 , and A E B D = 5 2 \frac{AE}{BD}=\frac{\sqrt5}{2} , find the length of C F CF .


Also try Nasty Triangles 4 .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Maria Kozlowska
May 7, 2015

A B C = A C B , A D E = 180 A B C C D E = A B C A B C \angle ABC = \angle ACB, \angle ADE = 180 - \angle ABC \Rightarrow \angle CDE=\angle ABC \Rightarrow \triangle ABC and D C E \triangle DCE are similar D E = E C , B C = B E + D E \Rightarrow DE = EC, BC =BE + DE and 3 B C = D E 2 D E × B C = 6 \frac{3}{BC}=\frac{DE}{2} \Rightarrow DE \times BC=6 A B E D ABED is cyclic \Rightarrow A E D B = A B × A D + B E × D E A B × B E + A D × D E = 5 2 \frac{AE}{DB} = \frac{AB \times AD + BE \times DE}{AB \times BE + AD \times DE} = \frac{\sqrt{5}}{2} From these we get D E = 5 , B E = 1 5 DE = \sqrt{5}, BE = \frac{1}{\sqrt{5}} Using Menelaus Theorem: A F A F 3 1 5 2 1 = 1 \frac{AF}{AF-3}\frac{1}{5}\frac{2}{1}=1 we get A F = 5 AF=5 Using Menelaus Theorem again: 3 2 D E E F 2 3 = 1 \frac{3}{2}\frac{DE}{EF}\frac{2}{3}=1 we get D E = E F = 5 = E C DE=EF=\sqrt{5}=EC . From this we get A C F = 90 \angle ACF = 90 . C F = 5 2 3 2 = 4 CF=\sqrt{5^2-3^2}=\boxed{4}

Kenneth Tan
Aug 14, 2014

Suppose B E = a BE=a , E C = b EC=b , A E = c AE=c and B D = 2 5 c BD=\frac{2}{\sqrt5}c , because A B = A C = 3 AB=AC=3 , A B C = A C B = E C D \angle ABC=\angle ACB=\angle ECD , so D E = E C = b DE=EC=b . According to Stewart's theorem , A E 2 = A B 2 × E C + A C 2 × B E B E + E C B E × E C AE^2=\frac{AB^2\times EC+AC^2\times BE}{BE+EC}-BE\times EC c 2 = 3 2 b + 3 2 a a + b a b = 9 a b \begin{aligned} c^2&=\frac{3^2 b+3^2 a}{a+b}-ab \\&=9-ab \end{aligned} a b = 9 c 2 ab=9-c^2 According to secant-secant theorem , C D × C A = C E × C B CD\times CA=CE\times CB b ( b + a ) = 2 × 3 b(b+a)=2\times 3 a b + b 2 = 6 ab+b^2=6 According to Ptolemy's theorem , A B × D E + A D × B E = A E × B D AB\times DE+AD\times BE=AE\times BD 3 b + a = 2 5 c 2 3b+a=\frac{2}{\sqrt5}c^2 Now we have { a b = 9 c 2 a b + b 2 = 6 3 b + a = 2 5 c 2 \begin{cases} ab=9-c^2 \\ ab+b^2=6 \\ 3b+a=\frac{2}{\sqrt5}c^2 \end{cases} Solve the system of equations above and you would get a = 1 5 a=\frac{1}{\sqrt5} , b = 5 b=\sqrt5 , c = 8 c=\sqrt8 .

Now according to Menelaus' theorem , C D D A × A F F B × B E E C = 1 \frac{CD}{DA}\times \frac{AF}{FB}\times \frac{BE}{EC}=1 2 1 × 3 + B F B F × 1 5 5 = 1 \frac{2}{1}\times \frac{3+BF}{BF}\times \frac{\frac{1}{\sqrt5}}{\sqrt5}=1 So, B F = 2 BF=2 , according to Menelaus' theorem again, A B B F × F E E D × D C C A = 1 \frac{AB}{BF}\times \frac{FE}{ED}\times \frac{DC}{CA}=1 3 2 × F E 5 × 2 3 = 1 \frac{3}{2}\times \frac{FE}{\sqrt5}\times \frac{2}{3}=1 Hence, F E = 5 FE=\sqrt5 , notice F E = E D = E C = 5 FE=ED=EC=\sqrt5 and F E D FED is a straight line, we can conclude F C D = 9 0 \angle FCD=90^\circ .

Thus, C F = A F 2 A C 2 = 5 2 3 2 = 25 9 = 16 = 4 \begin{aligned} CF&=\sqrt{AF^2-AC^2} \\&=\sqrt{5^2-3^2}\\&=\sqrt{25-9}\\&=\sqrt{16}\\&=4 \end{aligned}

isn't there any method other than this i mean more simpler and little bit small steps?

Shaikh Waz Noori - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...