Nasty Triangles 5

Geometry Level 5

Given A B C \triangle ABC , A D AD and B E BE are angle bisectors of B A C \angle BAC and A B C \angle ABC respectively, if A B = 21 AB=21 , B C = 24 BC=24 , A C = 15 AC=15 , find the length of D E 2 DE^2 .


This is one part of 1+1 is not = to 3 .


The answer is 84.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Above sketch is drawn shows the triangle in coordinate plane. By Law of Cos, A = C o s 1 2 1 2 + 1 5 2 2 4 2 2 21 15 = 81.786 8 o . B = C o s 1 2 1 2 + 2 4 2 1 5 2 2 21 24 = 38.213 2 o . Y B C = T a n ( 90 B ) X = 1.27 X , Y A C = T a n ( A 90 ) X = 1.41 X + 21. Y B E = T a n ( 90 B 2 ) X = 2.88 X , Y A D = T a n ( A 2 90 ) X = 1.15 X + 21. S o l v i n g f o r D X a n d D Y = 1.27 D X , D ( 8.66 , 11 ) . S o l v i n g f o r E X a n d E Y = 2.88 E X , E ( 6.98 , 20 ) . D E 2 = ( 20 11 ) 2 + ( 6.98 8.66 ) 2 = 84 More accurate values were used on calculator to obtain integer 84. \text{ Above sketch is drawn shows the triangle in coordinate plane.}\\ \text{By Law of Cos, } \angle A =Cos^{-1}\dfrac{21^2+15^2 - 24^2}{2*21*15}=81.7868^o.\\ \angle B =Cos^{-1}\dfrac{21^2+24^2 - 15^2}{2*21*24}=38.2132^o.\\ \therefore~Y_{BC}=Tan(90 - B)*X=1.27*X,~~~~~Y_{AC}= Tan(A - 90)*X= - 1.41*X + 21.\\ Y_{BE}=Tan(90 - \dfrac B 2)*X=2.88*X,~~~~~Y_{AD}= Tan(\dfrac A 2 - 90)*X= - 1.15*X + 21.\\ \therefore~Solving ~for~D_X~and~D_Y=1.27*D_X, ~~D(8.66,11).\\ Solving ~for~E_X~and~E_Y=2.88*E_X, ~~E(6.98,20).\\ \therefore~DE^2=(20-11)^2 + (6.98 - 8.66)^2=\Huge~~\color{#D61F06}{84} \\\text{More accurate values were used on calculator to obtain integer 84.}

Nice solution, but actually this problem can be solved without using a calculator

Kenneth Tan - 5 years, 4 months ago

I did the same but due to calculation mistake my answer came 81.pls suggest any other metho.

D K - 2 years, 10 months ago
Kenneth Tan
Oct 30, 2014

By law of cosines: A B 2 = A C 2 + B C 2 2 A C × B C cos C AB^2=AC^2+BC^2-2AC\times BC \cos C 2 1 2 = 1 5 2 + 2 4 2 2 × 15 × 24 cos C 21^2=15^2+24^2-2\times15\times24 \cos C 441 = 225 + 576 2 × 15 × 24 cos C 441=225+576-2\times15\times24\cos C 2 × 15 × 24 cos C = 801 441 = 360 2\times15\times24\cos C=801-441=360 cos C = 1 2 \cos C=\frac{1}{2} C = 6 0 \therefore \angle C=60^\circ Since A D AD is the angle bisector of B A C \angle BAC , we have A B A C = B D D C \frac{AB}{AC}=\frac{BD}{DC} B D D C = 7 5 \frac{BD}{DC}=\frac{7}{5} B D + D C = B C = 24 BD+DC=BC=24 B D = 14 , D C = 10 \therefore BD=14,~DC=10 Since B E BE is the angle bisector of A B C \angle ABC , we have A B B C = A E E C \frac{AB}{BC}=\frac{AE}{EC} A E E C = 7 8 \frac{AE}{EC}=\frac{7}{8} A E + E C = A C = 15 AE+EC=AC=15 A E = 7 , E C = 8 \therefore AE=7,~EC=8 Now, by law of cosines, we could find the length of D E 2 DE^2 : D E 2 = E C 2 + D C 2 2 E C × D C cos C = 8 2 + 1 0 2 8 × 10 = 164 80 = 84 \begin{aligned} DE^2&=EC^2+DC^2-2EC\times DC\cos C \\&=8^2+10^2-8\times10\\&=164-80\\&=84 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...