Simplify the expression

Geometry Level 2

cos 2 ( π 4 x 2 ) sin 2 ( π 4 x 2 ) \large \cos^2 \left(\frac \pi 4 - \frac x2 \right) - \sin^2 \left(\frac \pi 4 - \frac x2 \right)

Simplify the expression above.

csc x \csc x tan x \tan x cos 2 x \cos 2x sin x \sin x

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Richard Costen
Apr 12, 2018

cos 2 ( π 4 x 2 ) sin 2 ( π 4 x 2 ) = cos [ 2 ( π 4 x 2 ) ] = cos ( π 2 x ) = sin x \cos^2(\frac{\pi}{4}-\frac x2)-\sin^2(\frac{\pi}{4}-\frac x2)=\cos[2(\frac{\pi}{4}-\frac x2)]=\cos(\frac{\pi}{2}-x)=\boxed{\sin x}

Awesome solution!

César Castro - 3 years, 1 month ago
Chew-Seong Cheong
Apr 12, 2018

y = cos 2 ( π 4 x 2 ) sin 2 ( π 4 x 2 ) Note that cos 2 A sin 2 A = cos 2 A = cos ( π 2 x ) = sin x \begin{aligned} y & = \cos^2 \left(\frac \pi 4 - \frac x2 \right) - \sin^2 \left(\frac \pi 4 - \frac x2 \right) & \small \color{#3D99F6} \text{Note that }\cos^2 A - \sin^2 A = \cos 2A \\ & = \cos \left(\frac \pi 2 - x \right) \\ & = \boxed{\sin x} \end{aligned}

The graph for the given expression is:

The graph for a) is:

The graph for b) is:

The graph for c) is:

The graph for d) is:

It can be clearly seen that the graph for the given expression and the graph for the expression at d) are the same.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...