Need Euler!

Calculus Level 5

If

u = csc 1 ( x + y x 3 + y 3 ) \large{u=\csc ^{ -1 }{ { \left( \sqrt { \frac { \sqrt { x } +\sqrt { y } }{ \sqrt [ 3 ]{ x } +\sqrt [ 3 ]{ y } } } \right) } } }

Then

x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = tan u A ( B + tan C u ) \large{x^2 \frac{\partial^{2} u}{\partial x^2}+2xy \frac{\partial^{2} u}{\partial x \partial y}+y^2 \frac{\partial^{2} u}{\partial y^{2}}=\frac{\tan u}{A} \left(B+\tan^{C} u \right)}

where A , B , C A,B,C are positive integers.

Find A + B + C A+B+C


The answer is 159.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Jan 15, 2016

An expression of the form a o x n + a 1 x n 1 y + a 2 x n 2 y 2 + . . . + a n y n a_{o}x^n+a_{1}x^{n-1}y+a^{2}x^{n-2}y^2+...+a_{n}y^{n} is a homogeneous function of degree n n which can be rewritten as

x n [ a o + a 1 ( y / x ) + a 2 ( y / x ) 2 + . . . + a n ( y / x ) n ] \large{x^{n}[a_{o}+a_{1}(y/x)+a_{2}(y/x)^2+...+a_{n}(y/x)^{n}]}

In general a function f ( x , y , z , t , . . . ) f(x,y,z,t,...) is said to be a homogeneous function of degree n n in x , y , z , t , . . x,y,z,t,.. if it can be expressed in the form x n ϕ ( y / x , z / x , t / x , . . ) \large{x^{n} \phi(y/x,z/x,t/x,..)} .

Euler theorem on homogeneous functions

If u u be a homogeneous function of degree n n in x x and y y . then

x u x + y u y = n u \large{x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=nu}

Proof

u = x n f ( y / x ) u=x^{n}f(y/x)

u x = n x n 1 f ( y / x ) y x n 2 f ( y / x ) u y = x n 1 f ( y / x ) \large{\therefore \frac{\partial u}{\partial x}=nx^{n-1}f(y/x)-yx^{n-2}f^{\prime}(y/x) \\ \frac{\partial u}{\partial y}=x^{n-1}f^{\prime}(y/x)}

Hence x u x + y u y = n x n f ( y / x ) = n u \large{x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=nx^{n}f(y/x)=nu}

Now, let csc u = z \csc u=z

z = x 1 12 ( 1 + y x 1 + y x 3 ) \large{z={ x }^{ \frac { 1 }{ 12 } }\left( \sqrt { \frac { 1+\sqrt { \frac { y }{ x } } }{ 1+\sqrt [ 3 ]{ \frac { y }{ x } } } } \right) }

z = x 1 12 ϕ ( y / x ) \large{\Rightarrow z=x^{\frac{1}{12}} \phi(y/x)}

x z x + y z y = z 12 \large{x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=\frac{z}{12}}

Also z x = csc u cot u u x \large{\frac{\partial z}{\partial x}=- \csc u \cot u \frac{\partial u}{\partial x}}

Thus we have

x u x + y u y = tan u 12 ( 1 ) \large{x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-\frac{\tan u}{12} \qquad (1) }

Partial differentiation equation ( 1 ) (1) w.r.t x x

u x + x 2 u x 2 + y 2 u x y = 1 12 ( sec 2 u ) u x \large{ \frac{\partial u}{\partial x}+x \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^2 u}{\partial x \partial y}=-\frac{1}{12} (\sec^2 u) \frac{\partial u}{\partial x}}

x 2 u x 2 + y 2 u x y = ( sec 2 u 12 + 1 ) u x ( 2 ) \large{\Rightarrow x \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^2 u}{\partial x \partial y}=- \left(\frac{\sec^2 u}{12}+1 \right) \frac{\partial u}{\partial x} \qquad (2)}

Similarly partial differentiation of equation ( 1 ) (1) w.r.t y y gives

y 2 u y 2 + x 2 u y x = ( sec 2 u 12 + 1 ) u y ( 3 ) \large{\Rightarrow y \frac{\partial^{2} u}{\partial y^{2}}+x \frac{\partial^2 u}{\partial y \partial x}=- \left(\frac{\sec^2 u}{12}+1 \right) \frac{\partial u}{\partial y} \qquad (3)}

Note that here 2 u y x = 2 u x y \large{\frac{\partial^2 u}{\partial y \partial x}= \frac{\partial^2 u}{\partial x \partial y}} You can easily check this yourself.

Now multiply ( 2 ) (2) with x x and ( 3 ) (3) with y y and add the both resulting equations, we get

x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = ( sec 2 u 12 + 1 ) [ x u x + y u y ] \large{\Rightarrow x^2 \frac{\partial^{2} u}{\partial x^{2}}+2xy \frac{\partial^2 u}{\partial x \partial y} +y^2 \frac{\partial^{2} u}{\partial y^{2}}=- \left(\frac{\sec^2 u}{12}+1 \right) \left[x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right]}

From ( 1 ) (1) we have

x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = ( sec 2 u 12 + 1 ) . ( tan u 12 ) \large{\Rightarrow x^2 \frac{\partial^{2} u}{\partial x^{2}}+2xy \frac{\partial^2 u}{\partial x \partial y} +y^2 \frac{\partial^{2} u}{\partial y^{2}}=- \left(\frac{\sec^2 u}{12}+1 \right). \left(-\frac{\tan u}{12} \right)}

x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = tan u 144 ( 13 + tan 2 u ) \large{\Rightarrow x^2 \frac{\partial^{2} u}{\partial x^{2}}+2xy \frac{\partial^2 u}{\partial x \partial y} +y^2 \frac{\partial^{2} u}{\partial y^{2}}=\frac{\tan u}{144} \left(13+\tan^2 u \right)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...