If
u = csc − 1 ⎝ ⎛ 3 x + 3 y x + y ⎠ ⎞
Then
x 2 ∂ x 2 ∂ 2 u + 2 x y ∂ x ∂ y ∂ 2 u + y 2 ∂ y 2 ∂ 2 u = A tan u ( B + tan C u )
where A , B , C are positive integers.
Find A + B + C
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
An expression of the form a o x n + a 1 x n − 1 y + a 2 x n − 2 y 2 + . . . + a n y n is a homogeneous function of degree n which can be rewritten as
x n [ a o + a 1 ( y / x ) + a 2 ( y / x ) 2 + . . . + a n ( y / x ) n ]
In general a function f ( x , y , z , t , . . . ) is said to be a homogeneous function of degree n in x , y , z , t , . . if it can be expressed in the form x n ϕ ( y / x , z / x , t / x , . . ) .
Euler theorem on homogeneous functions
If u be a homogeneous function of degree n in x and y . then
x ∂ x ∂ u + y ∂ y ∂ u = n u
Proof
u = x n f ( y / x )
∴ ∂ x ∂ u = n x n − 1 f ( y / x ) − y x n − 2 f ′ ( y / x ) ∂ y ∂ u = x n − 1 f ′ ( y / x )
Hence x ∂ x ∂ u + y ∂ y ∂ u = n x n f ( y / x ) = n u
Now, let csc u = z
z = x 1 2 1 ( 1 + 3 x y 1 + x y )
⇒ z = x 1 2 1 ϕ ( y / x )
x ∂ x ∂ z + y ∂ y ∂ z = 1 2 z
Also ∂ x ∂ z = − csc u cot u ∂ x ∂ u
Thus we have
x ∂ x ∂ u + y ∂ y ∂ u = − 1 2 tan u ( 1 )
Partial differentiation equation ( 1 ) w.r.t x
∂ x ∂ u + x ∂ x 2 ∂ 2 u + y ∂ x ∂ y ∂ 2 u = − 1 2 1 ( sec 2 u ) ∂ x ∂ u
⇒ x ∂ x 2 ∂ 2 u + y ∂ x ∂ y ∂ 2 u = − ( 1 2 sec 2 u + 1 ) ∂ x ∂ u ( 2 )
Similarly partial differentiation of equation ( 1 ) w.r.t y gives
⇒ y ∂ y 2 ∂ 2 u + x ∂ y ∂ x ∂ 2 u = − ( 1 2 sec 2 u + 1 ) ∂ y ∂ u ( 3 )
Note that here ∂ y ∂ x ∂ 2 u = ∂ x ∂ y ∂ 2 u You can easily check this yourself.
Now multiply ( 2 ) with x and ( 3 ) with y and add the both resulting equations, we get
⇒ x 2 ∂ x 2 ∂ 2 u + 2 x y ∂ x ∂ y ∂ 2 u + y 2 ∂ y 2 ∂ 2 u = − ( 1 2 sec 2 u + 1 ) [ x ∂ x ∂ u + y ∂ y ∂ u ]
From ( 1 ) we have
⇒ x 2 ∂ x 2 ∂ 2 u + 2 x y ∂ x ∂ y ∂ 2 u + y 2 ∂ y 2 ∂ 2 u = − ( 1 2 sec 2 u + 1 ) . ( − 1 2 tan u )
⇒ x 2 ∂ x 2 ∂ 2 u + 2 x y ∂ x ∂ y ∂ 2 u + y 2 ∂ y 2 ∂ 2 u = 1 4 4 tan u ( 1 3 + tan 2 u )