What's The Best Way To Factor This?

3 x + 2 y = x y \large 3x + 2y = xy

Let ( x 1 , y 1 ) , ( x 2 , y 2 ) , , ( x n , y n ) (x_1,y_1), (x_2,y_2), \ldots, (x_n,y_n) be all the pairs of positive integer roots ( x , y ) (x,y) that satisfy the equation above.

Find ( x 1 + x 2 + + x n ) + ( y 1 + y 2 + + y n ) (x_1 + x_2 + \cdots +x_n) + (y_1 + y_2 + \cdots + y_n) .


The answer is 44.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Quadratic Diophantine Equations - Solve by Simon's Favorite Factoring Trick

Rewrite the given equation as x y 3 x 2 y = 0 ( x 2 ) ( y 3 ) = 6 xy - 3x - 2y = 0 \Longrightarrow (x - 2)(y - 3) = 6 .

We then note that as 6 6 has 8 integer divisors, namely ± 1 , ± 2 , ± 3 \pm 1, \pm 2, \pm 3 and ± 6 \pm 6 , we can express 6 6 as a product of 2 integers in 8 ordered ways, i.e.,

  • x 2 = 1 , y 3 = 6 ( x , y ) = ( 3 , 9 ) x - 2 = 1, y - 3 = 6 \Longrightarrow (x,y) = (3,9) , or x 2 = 6 , y 3 = 1 ( x , y ) = ( 8 , 4 ) x - 2 = 6, y - 3 = 1 \Longrightarrow (x,y) = (8,4) ,

  • x 2 = 2 , y 3 = 3 ( x , y ) = ( 4 , 6 ) x - 2 = 2, y - 3 = 3 \Longrightarrow (x,y) = (4,6) or x 2 = 3 , y 3 = 2 ( x , y ) = ( 5 , 5 ) x - 2 = 3, y - 3 = 2 \Longrightarrow (x,y) = (5,5) ,

  • x 2 = 1 , y 3 = 6 ( x , y ) = ( 1 , 3 ) x - 2 = -1, y - 3 = -6 \Longrightarrow (x,y) = (1,-3) or x 2 = 6 , y 3 = 1 ( x , y ) = ( 4 , 2 ) x - 2 = -6, y - 3 = -1 \Longrightarrow (x,y) = (-4,2) ,

  • x 2 = 2 , y 3 = 3 ( ( x , y ) = ( 0 , 0 ) x - 2 = -2, y - 3 = -3 \Longrightarrow ((x,y) = (0,0) or x 2 = 3 , y 3 = 2 ( x , y ) = ( 1 , 1 ) x - 2 = -3, y - 3 = -2 \Longrightarrow (x,y) = (-1,1) .

Of these 8 cases, only 4 are such that both x x and y y are positive, namely ( 3 , 9 ) , ( 8 , 4 ) , ( 4 , 6 ) (3,9), (8,4), (4,6) and ( 5 , 5 ) (5,5) , so the desired sum is ( 3 + 8 + 4 + 5 ) + ( 9 + 4 + 6 + 5 ) = 20 + 24 = 44 (3 + 8 + 4 + 5) + (9 + 4 + 6 + 5) = 20 + 24 = \boxed{44} .

Standard usage of SFFT. +1!

Sharky Kesa - 4 years, 7 months ago
Tarmo Taipale
Oct 25, 2016

3 x + 2 y = x y 3x+2y=xy

3 x x y + 2 y = 0 3x-xy+2y=0

( 3 y ) x = 2 y (3-y)x=-2y

x = 2 y y 3 x=\frac{2y}{y-3} when y y is not equal to 3.

Let's look at the case y = 3 y=3 :

3 x + 2 × 3 = x × 3 3x+2\times3=x\times3

6 = 0 6=0 , which is false, so y y can't be equal to 3.

When y = 1 y=1 or y = 2 y=2 , the denominator y 3 y-3 in the equation x = 2 y y 3 x=\frac{2y}{y-3} is negative, which means x x can't be a positive integer. Now, let's look at two inequalities when y > 3 y>3 :

x = 2 y y 3 > 2 x=\frac{2y}{y-3}>2

2 y > 2 ( y 3 ) 2y>2(y-3)

0 > 6 0>-6 , which holds true with all y > 3 y>3 .

Secondly,

x = 2 y y 3 < 3 x=\frac{2y}{y-3}<3

2 y < 3 y 9 2y<3y-9

y > 9 y>9 .

By looking at the two inequalities, x x is between 2 and 3 with all y > 9 y>9 , meaning x x can't be an integer. This means there are no pairs of positive integer roots with y > 9 y>9 . Now we are looking at x x -values with integer y y equal to or less than 9:

y = 4 y=4 : x = 2 × 4 4 3 = 8 x=\frac{2\times4}{4-3}=8

y = 5 y=5 : x = 2 × 5 5 3 = 5 x=\frac{2\times5}{5-3}=5

y = 6 y=6 : x = 2 × 6 6 3 = 4 x=\frac{2\times6}{6-3}=4

y = 7 y=7 : x = 2 × 7 7 3 = 7 2 x=\frac{2\times7}{7-3}=\frac{7}{2}

y = 8 y=8 : x = 2 × 8 8 3 = 16 5 x=\frac{2\times8}{8-3}=\frac{16}{5}

y = 9 y=9 : x = 2 × 9 9 3 = 3 x=\frac{2\times9}{9-3}=3

We see that there are four pairs of positive integer roots: ( 4 ; 8 ) , ( 5 ; 5 ) , ( 6 ; 4 ) , ( 9 ; 3 ) (4;8),(5;5),(6;4),(9;3) The asked sum is therefore ( 4 + 5 + 6 + 9 ) + ( 8 + 5 + 4 + 3 ) = 44 (4+5+6+9)+(8+5+4+3)=\boxed{44} .

Good approach!!

Aaron Jerry Ninan - 4 years, 7 months ago

Log in to reply

Thank you!

Tarmo Taipale - 4 years, 7 months ago
Jesse Nieminen
Nov 8, 2016

For positive x x and y y , 3 x + 2 y = x y 3 y + 2 x = 1 x > 2 , y > 3 3x + 2y = xy \Rightarrow \dfrac 3y + \dfrac 2x = 1 \Rightarrow x > 2, y > 3 .
Also, 3 x + 2 y = x y ( x 2 ) ( y 3 ) = 6 3x + 2y = xy \Rightarrow (x - 2)(y - 3) = 6 .
Now ( x 2 ) (x - 2) can be any positive factor of 6 6 and so can ( y 3 ) (y - 3) , since 6 x 2 = y 3 \dfrac 6{x-2} = y-3 .

Now the sum of the possible values for x x must be the sum of factors of 6 6 plus 2 2 for each x x , since we subtract 2 2 .
Also the sum of the possible values for y y must be the sum of factors of 6 6 plus 3 3 for each y y , since we subtract 3 3 .

Hence, the answer must be 2 ( 1 + 2 + 3 + 6 ) + 4 ( 3 + 2 ) = 44 2(1 + 2 + 3 + 6) + 4(3+2) = \boxed{44} .

It's a bit mystery to me how you got that 2 ( 1 + 2 + 3 + 6 ) + 4 ( 3 + 2 ) 2(1+2+3+6)+4(3+2) . The other parts of your solution are clear.

Tarmo Taipale - 4 years, 7 months ago

Log in to reply

I explained it at the end. Edit: I edited the solution.

Jesse Nieminen - 4 years, 7 months ago

Log in to reply

Ah, of course. Didn't first notice the connection between it and the text in the end. :)

Tarmo Taipale - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...