Product Multiple

Geometry Level 2

( 1 + cos A ) ( 1 + cos 3 A ) ( 1 + cos 5 A ) ( 1 + cos 7 A ) \large (1+\cos A)(1+\cos 3A)(1+ \cos 5A)(1+\cos 7A)

What is the value of the expression above if A = 22. 5 A = 22.5^\circ ?

1 4 \frac14 1 8 \frac18 1 2 \frac12 1 3 \frac13

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 22, 2015

( 1 + cos 22. 5 ) ( 1 + cos 67. 5 ) ( 1 + cos 112. 5 ) ( 1 + cos 157. 5 ) = ( 1 + cos 22. 5 ) ( 1 + cos 67. 5 ) ( 1 cos ( 18 0 112. 5 ) ) ( 1 cos ( 18 0 157. 5 ) ) = ( 1 + cos 22. 5 ) ( 1 + cos 67. 5 ) ( 1 cos 22. 5 ) ( 1 cos 67. 5 ) = ( 1 cos 2 22. 5 ) ( 1 cos 2 67. 5 ) = ( 1 2 1 2 ( 2 cos 2 22. 5 1 ) ) ( 1 2 1 2 ( 2 cos 2 67. 5 1 ) ) = 1 4 ( 1 cos 4 5 ) ( 1 cos 13 5 ) = 1 4 ( 1 cos 4 5 ) ( 1 + cos 4 5 ) = 1 4 ( 1 1 2 ) ( 1 + 1 2 ) = 1 4 ( 1 1 2 ) = 1 8 (1+\cos{22.5^\circ}) (1+\cos{67.5^\circ}) (1+\cos{112.5^\circ}) (1+\cos{157.5^\circ}) \\ = (1+\cos{22.5^\circ}) (1+\cos{67.5^\circ}) \\ \quad \quad (1-\cos{(180^\circ-112.5^\circ)}) (1-\cos{(180^\circ-157.5^\circ)}) \\ = (1+\cos{22.5^\circ}) (1+\cos{67.5^\circ}) (1 - \cos{22.5^\circ}) (1 -\cos{67.5^\circ}) \\ = (1-\cos^2{22.5^\circ}) (1-\cos^2{67.5^\circ}) \\ = \left( \frac{1}{2} - \frac{1}{2} (2\cos^2{22.5^\circ} - 1)\right) \left( \frac{1}{2} - \frac{1}{2} (2\cos^2{67.5^\circ} - 1)\right) \\ = \frac {1}{4} (1 - \cos{45^\circ}) (1 - \cos{135^\circ}) \\ = \frac {1}{4} (1 - \cos{45^\circ}) (1 + \cos{45^\circ}) \\ = \frac {1}{4} (1 - \frac{1}{\sqrt{2}}) (1 + \frac{1}{\sqrt{2}}) \\ = \frac {1}{4} (1 - \frac{1}{2}) \\ = \boxed{\frac{1}{8}}

Aquilino Madeira
Jul 12, 2015

[ 1 + cos ( 22.5 ) ] [ 1 + cos ( 67.5 ) ] [ 1 + cos ( 112.5 ) ] [ 1 + cos ( 157.5 ) ] = [ 1 + cos ( 22.5 ) ] [ 1 + cos ( 67.5 ) ] [ 1 + cos ( 90 + 22.5 ) ] [ 1 + cos ( 90 + 67.5 ) ] = [ 1 + cos ( 22.5 ) ] [ 1 + cos ( 67.5 ) ] [ 1 sin ( 22.5 ) ] [ 1 + sin ( 67.5 ) ] = [ 1 + cos ( 22.5 ) ] [ 1 + cos ( 90 22.5 ) ] [ 1 sin ( 22.5 ) ] [ 1 + sin ( 90 22.5 ) ] = [ 1 + cos ( 22.5 ) ] [ 1 + sin ( 22.5 ) ] [ 1 sin ( 22.5 ) ] [ 1 cos ( 22.5 ) ] = [ 1 + cos ( 22.5 ) ] [ 1 cos ( 22.5 ) ] [ 1 + sin ( 22.5 ) ] [ 1 sin ( 22.5 ) ] = [ 1 cos 2 ( 22.5 ) ] [ 1 sin 2 ( 22.5 ) ] = cos 2 ( 22.5 ) s i n 2 ( 22.5 ) = cos ( 22.5 ) s i n ( 22.5 ) × cos ( 22.5 ) s i n ( 22.5 ) = 2 × cos ( 22.5 ) s i n ( 22.5 ) 2 × 2 × cos ( 22.5 ) s i n ( 22.5 ) 2 = s i n ( 2 × 22.5 ) 2 × s i n ( 2 × 22.5 ) 2 = s i n ( 45 ) 2 × s i n ( 45 ) 2 = 2 2 2 × 2 2 2 = 2 4 4 = 1 8 \begin{array}{l} \left[ {1 + \cos (22.5)} \right]\left[ {1 + \cos (67.5)} \right]\left[ {1 + \cos (112.5)} \right]\left[ {1 + \cos (157.5)} \right]\\ = \left[ {1 + \cos (22.5)} \right]\left[ {1 + \cos (67.5)} \right]\left[ {1 + \cos (90 + 22.5)} \right]\left[ {1 + \cos (90 + 67.5)} \right]\\ = \left[ {1 + \cos (22.5)} \right]\left[ {1 + \cos (67.5)} \right]\left[ {1 - \sin (22.5)} \right]\left[ {1 + \sin (67.5)} \right]\\ = \left[ {1 + \cos (22.5)} \right]\left[ {1 + \cos (90 - 22.5)} \right]\left[ {1 - \sin (22.5)} \right]\left[ {1 + \sin (90 - 22.5)} \right]\\ = \left[ {1 + \cos (22.5)} \right]\left[ {1 + \sin (22.5)} \right]\left[ {1 - \sin (22.5)} \right]\left[ {1 - \cos (22.5)} \right]\\ = \left[ {1 + \cos (22.5)} \right]\left[ {1 - \cos (22.5)} \right]\left[ {1 + \sin (22.5)} \right]\left[ {1 - \sin (22.5)} \right]\\ = \left[ {1 - {{\cos }^2}(22.5)} \right]\left[ {1 - {{\sin }^2}(22.5)} \right]\\ = {\cos ^2}(22.5)si{n^2}(22.5)\\ = \cos (22.5)sin(22.5) \times \cos (22.5)sin(22.5)\\ = \frac{{2 \times \cos (22.5)sin(22.5)}}{2} \times \frac{{2 \times \cos (22.5)sin(22.5)}}{2}\\ = \frac{{sin(2 \times 22.5)}}{2} \times \frac{{sin(2 \times 22.5)}}{2}\\ = \frac{{sin(45)}}{2} \times \frac{{sin(45)}}{2}\\ = \frac{{\frac{{\sqrt 2 }}{2}}}{2} \times \frac{{\frac{{\sqrt 2 }}{2}}}{2}\\ = \frac{{\frac{2}{4}}}{4}\\ = \frac{1}{8} \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...