A geometry problem by Alisina Zayeni

Geometry Level pending

In triangle ABC , angle (B=2C).AD is an angle bisector of angle(A). Suppose that AB=120 and BD=50. Find the length of AC.!!!


The answer is 170.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Jan 9, 2018

Let:

C = α \large \displaystyle \angle{C} = \alpha

Then:

B = 2 α \large \displaystyle \angle{B} = 2 \alpha

A = 18 0 o 3 α \large \displaystyle \angle{A} = 180^o - 3 \alpha

Also:

B A D = C A D = 9 0 o 3 α 2 \large \displaystyle \angle{BAD} = \angle{CAD} = 90^o - \frac{3 \alpha}{2}

B D A = 9 0 o α 2 \large \displaystyle \angle{BDA} = 90^o - \frac{\alpha}{2}

C D A = 9 0 o + α 2 \large \displaystyle \angle{CDA} = 90^o + \frac{\alpha}{2}

Then, by sine law:

A B sin ( B D A ) = A D sin ( B A D ) \large \displaystyle \frac{ \overline{AB}} {\sin(\angle{BDA})} = \frac{ \overline{AD}}{\sin(\angle{BAD})}

120 sin ( 9 0 o α 2 ) = 50 sin ( 9 0 o 3 α 2 ) \large \displaystyle \frac{120}{\sin(90^o - \frac{\alpha}{2})} = \frac{50}{\sin(90^o - \frac{3\alpha}{2})}

120 cos ( α 2 ) = 50 cos ( 3 α 2 ) \large \displaystyle \frac{120}{\cos(\frac{\alpha}{2})} = \frac{50}{\cos(\frac{3\alpha}{2})}

120 [ 4 cos 3 ( α 2 ) 3 cos ( α 2 ) ] = 50 cos ( α 2 ) \large \displaystyle 120 \left [ 4 \cos^3 \left (\frac{\alpha}{2} \right) - 3\cos \left (\frac{\alpha}{2} \right ) \right ] = 50 \cos \left (\frac{\alpha}{2} \right)

Since 0 o < α < 6 0 o 0^o < \alpha < 60^o , cos ( α 2 ) > 0 \cos \left (\frac{\alpha}{2} \right ) > 0 . (If α > 6 0 o \alpha > 60^o , B + C > 18 0 o \angle{B} + \angle{C} > 180^o ).

cos ( α 2 ) = 41 48 \color{#20A900} \boxed{ \large \displaystyle \cos \left (\frac{\alpha}{2} \right ) = \sqrt{\frac{41}{48}} }

Also:

cos ( α ) = 2 cos 2 ( α 2 ) 1 = 17 24 \large \displaystyle \cos(\alpha) = 2 \cos^2 \left (\frac{\alpha}{2} \right ) - 1 = \frac{17}{24}

sin ( α ) = 1 cos 2 ( α ) \large \displaystyle \sin(\alpha) = \sqrt{1 - \cos^2(\alpha)}

sin ( α ) = 287 24 \color{#20A900} \boxed { \large \displaystyle \sin(\alpha) = \frac{\sqrt{287}}{24} }

cos ( 2 α ) = 2 cos 2 ( α ) 1 = 1 288 \large \displaystyle \cos(2 \alpha) = 2 \cos^2 (\alpha) - 1 = \frac{1}{288}

sin ( 2 α ) = 1 cos 2 ( 2 α ) \large \displaystyle \sin(2 \alpha) = \sqrt{1 - \cos^2(2 \alpha)}

sin ( 2 α ) = 17 287 288 \color{#20A900} \boxed { \large \displaystyle \sin(2 \alpha) = \frac{17 \sqrt{287}}{288} }

By sine law again:

A C sin ( B ) = A B sin ( C ) \large \displaystyle \frac{ \overline{AC}} {\sin(\angle{B})} = \frac{ \overline{AB}}{\sin(\angle{C})}

A C sin ( 2 α ) = 120 sin ( α ) \large \displaystyle \frac{ \overline{AC}} {\sin(2 \alpha)} = \frac{120} {\sin(\alpha)}

A C = 120 17 287 288 287 24 \large \displaystyle \overline{AC} = 120 \cdot \frac{ \frac{17 \sqrt{287}}{288}} { \frac{\sqrt{287}}{24} }

A C = 170 \color{#3D99F6} \boxed { \large \displaystyle \overline{AC} = 170}

Your solution is excellent but try to solve it without trignometry ..... For example E is a point on the extend of BC such that BD=120........

Alisina Zayeni - 3 years, 5 months ago

Log in to reply

I have solve it

Not so easy not so hard

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...