In triangle ABC , angle (B=2C).AD is an angle bisector of angle(A). Suppose that AB=120 and BD=50. Find the length of AC.!!!
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let:
∠ C = α
Then:
∠ B = 2 α
∠ A = 1 8 0 o − 3 α
Also:
∠ B A D = ∠ C A D = 9 0 o − 2 3 α
∠ B D A = 9 0 o − 2 α
∠ C D A = 9 0 o + 2 α
Then, by sine law:
sin ( ∠ B D A ) A B = sin ( ∠ B A D ) A D
sin ( 9 0 o − 2 α ) 1 2 0 = sin ( 9 0 o − 2 3 α ) 5 0
cos ( 2 α ) 1 2 0 = cos ( 2 3 α ) 5 0
1 2 0 [ 4 cos 3 ( 2 α ) − 3 cos ( 2 α ) ] = 5 0 cos ( 2 α )
Since 0 o < α < 6 0 o , cos ( 2 α ) > 0 . (If α > 6 0 o , ∠ B + ∠ C > 1 8 0 o ).
cos ( 2 α ) = 4 8 4 1
Also:
cos ( α ) = 2 cos 2 ( 2 α ) − 1 = 2 4 1 7
sin ( α ) = 1 − cos 2 ( α )
sin ( α ) = 2 4 2 8 7
cos ( 2 α ) = 2 cos 2 ( α ) − 1 = 2 8 8 1
sin ( 2 α ) = 1 − cos 2 ( 2 α )
sin ( 2 α ) = 2 8 8 1 7 2 8 7
By sine law again:
sin ( ∠ B ) A C = sin ( ∠ C ) A B
sin ( 2 α ) A C = sin ( α ) 1 2 0
A C = 1 2 0 ⋅ 2 4 2 8 7 2 8 8 1 7 2 8 7
A C = 1 7 0