Negative binomial coefficients

Let n n be a positive integer. Then ( n n ) = __________ . \binom{-n}{n} = \text{\_\_\_\_\_\_\_\_\_\_}.

1 -1 ( 2 n n ) \binom{2n}{n} n ! n! ( 1 ) n ( 2 n 1 n ) (-1)^n \binom{2n-1}{n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

By Induction : a) ( 1 1 ) = 1 1 ! = 1 = ( 1 ) 1 ( 2 1 1 1 ) \binom{-1}{1} = \frac{-1}{1!} = - 1 = (-1)^1 \binom{2\cdot1 - 1}{1} ( 2 2 ) = ( 2 ) ( 3 ) 2 ! = 3 = ( 1 ) 2 ( 2 2 1 2 ) \binom{-2}{2} = \frac{(-2)\cdot(-3)}{2!} = 3 = (-1)^2 \binom{2\cdot2 - 1}{2} b) Let's suppose that for n > 2 n > 2 ( n n ) = ( 1 ) n ( 2 n 1 n ) \binom{-n}{n} = (-1)^n \binom{2n - 1}{n} , then 1. \boxed{1.-} ( n 1 n + 1 ) = ( n 1 ) ( n 2 ) ( n n 1 ) ( n + 1 ) ! = ( 1 ) n + 1 ( n + 1 ) ( n + 2 ) ( 2 n + 1 ) ( n + 1 ) ! = \binom{-n - 1}{n + 1} = \frac{(-n - 1)\cdot (-n - 2) \cdot\cdot \cdot (-n - n - 1)}{(n+1)!} = (-1)^{n + 1} \frac{(n +1) \cdot (n+ 2)\cdot\cdot \cdot (2n + 1)}{(n+1)!} = = ( 1 ) n + 1 ( 2 ( n + 1 ) 1 n + 1 ) = ( 1 ) n + 1 ( 2 n + 1 n + 1 ) = (-1)^{n + 1} \binom{2(n + 1) - 1}{n+ 1} = (-1)^{n + 1} \binom{2n + 1}{n + 1} . Therefore, n Z + = { 1 , 2 , 3 , . . . } \forall n \in \mathbb{Z}^+ = \{1,2,3,...\} , ( n n ) = ( 1 ) n ( 2 n 1 n ) \binom{-n}{n} = (-1)^n \binom{2n - 1}{n}

2. \boxed{2.-} Where have I used induction in step b)?

( n 1 ) ( n 2 ) ( n n 1 ) ( n + 1 ) ! = ( n ) ( n 1 ) ( n 2 ) ( n n + 1 ) ( n n ) ( n n 1 ) ( n ) ( n + 1 ) ! = \frac{(-n - 1)\cdot (-n - 2) \cdot\cdot \cdot (-n - n - 1)}{(n+1)!} = \frac{(- n)\cdot (-n - 1)\cdot (-n - 2) \cdot\cdot \cdot (-n - n +1)\cdot (-n -n ) \cdot (-n - n - 1)}{(-n)\cdot(n+1)!} = Here is the step of induction = ( 1 ) n 1 ( 2 n 1 n ) ( 2 n ) ( n n 1 ) n ( n + 1 ) = ( 1 ) n 1 ( 2 n 1 n ) ( 2 ) ( n n 1 ) ( n + 1 ) = = (-1)^{n-1} \binom{2n -1}{n} \cdot \frac{(-2n)(-n -n -1)}{n(n+1)} = (-1)^{n-1} \binom{2n -1}{n} \cdot \frac{(-2)(-n -n -1)}{(n+1)} = = ( 1 ) n + 1 ( 2 n 1 n ) 2 ( 2 n + 1 ) ( n + 1 ) = ( 1 ) n + 1 ( 2 n + 1 n + 1 ) = (-1)^{n +1} \binom{2n -1}{n} \cdot \frac{2(2n +1)}{(n+1)} =(-1)^{n +1} \binom{2n +1}{n+1} For ending A = ( 2 n + 1 n + 1 ) ( 2 n 1 n ) = ( 2 n + 1 ) ! ( n + 1 ) ! n ! ( 2 n 1 ) ! n ! ( n 1 ) ! = ( 2 n + 1 ) ! ( n + 1 ) ! ( 2 n 1 ) ! ( n 1 ) ! = ( 2 n + 1 ) 2 n ( n + 1 ) n = 2 ( 2 n + 1 ) n + 1 \large A = \frac{\binom{2n + 1}{n + 1}}{\binom{2n - 1}{n}} = \frac{\frac{(2n + 1)!}{(n+1)! \cdot n!}}{\frac{(2n - 1)!}{n! \cdot (n - 1)!}} = \frac{\frac{(2n + 1)!}{(n+1)!}}{\frac{(2n - 1)!}{(n - 1)!}} = \frac{(2n + 1) \cdot 2n}{(n + 1) \cdot n} = \frac{2(2n +1)}{n + 1} n Z + = { 1 , 2 , 3 , . . . } \forall n \in \mathbb{Z}^+ = \{1,2,3,...\}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...