Negative exponent

Algebra Level 2

Find x x .

( 9 3 3 5 ) 2 = x \large{\left(\dfrac{9^{-3}}{3^{-5}}\right)^{-2}=x}

Note: Try not to use a calculator.

1 1 1 9 \dfrac{1}{9} 9 9 1 3 \dfrac{1}{3} 3 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nazmus Sakib
Nov 15, 2017

( 9 3 3 5 ) 2 = x \large{\left(\dfrac{9^{-3}}{3^{-5}}\right)^{-2}=x}

( 3 2. ( 3 ) 3 5 ) 2 = x \large\left(\dfrac{3^{2.(-3)}}{3^{-5}}\right)^{-2}=x

( 3 6 3 5 ) 2 = x \large\left(\dfrac{3^{-6}}{3^{-5}}\right)^{-2}=x

( 3 6 + 5 ) 2 = x \large\left(3^{-6+5}\right)^{-2}=x

( 3 1 ) 2 = x \large\left(3^{-1}\right)^{-2}=x

3 2 = x \large3^{2}=x

9 = x \large\boxed{9}=x

( 9 3 3 5 ) 2 = ( 3 5 9 3 ) 2 = ( 3 3 3 3 3 9 9 9 ) 2 = ( 9 9 3 9 9 9 ) 2 = ( 1 3 ) 2 = 1 ( 1 3 ) 2 = 1 1 9 = 1 9 1 = 9 \left(\dfrac{9^{-3}}{3^{-5}}\right)^{-2}=\left(\dfrac{3^5}{9^3}\right)^{-2}=\left(\dfrac{3\cdot 3\cdot 3 \cdot 3 \cdot 3}{9\cdot 9 \cdot 9}\right)^{-2}=\left(\dfrac{9\cdot 9\cdot 3}{9\cdot 9 \cdot 9}\right)^{-2}=\left(\dfrac{1}{3}\right)^{-2}=\dfrac{1}{\left(\dfrac{1}{3}\right)^2}=\dfrac{1}{\dfrac{1}{9}}=1 \cdot \dfrac{9}{1}=\boxed{9}

Munem Shahriar
Nov 16, 2017

( 9 3 3 5 ) 2 = x {\left(\dfrac{9^{-3}}{3^{-5}}\right)^{-2} = x}

( 1 3 ) 2 = x \Rightarrow \left(\dfrac{1}{3}\right)^{-2} = x

( 3 1 ) 2 = x \Rightarrow \left(\dfrac{3}{1} \right)^2 = x

9 = x \Rightarrow 9 =x

Hence x = 9 x = \boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...