Two sets of complex numbers ( z 1 , z 2 , z 3 , z 4 ) ∈ C 4 and ( ω 1 , ω 2 , ω 3 ) ∈ C 3 are called neighbors if all the following six numbers are purely real. z 2 − z 1 ω 1 − z 1 z 3 − z 2 ω 2 − z 2 z 1 − z 3 ω 3 − z 3 i z 2 − z 1 ω 1 − z 4 i z 3 − z 2 ω 2 − z 4 i z 1 − z 3 ω 3 − z 4
It turns out that all quadruples ( z 1 , z 2 , z 3 , z 4 ) ∈ C 4 consisting of pairwise distinct complex numbers have a unique neighbor.
A quadruple ( z 1 , z 2 , z 3 , z 4 ) ∈ C 4 is called popular if the elements of its neighbor are equal (that is, the corresponding ω 1 , ω 2 , ω 3 are equal).
A triple ( z 1 , z 2 , z 3 ) ∈ C 3 is called attractive if for all x ∈ C , the quadruple ( z 1 , z 2 , z 3 , x ) is popular.
Let ( z 1 , z 2 , z 3 ) be any attractive triple. Find ℑ ( z 3 − z 1 z 2 − z 1 ) .
Details and assumptions
i = − 1
ℑ ( z ) denotes the imaginary part of z .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice!
Assume: z i = z i . a + i z i . b = > I ( z 2 − z 1 w − z 1 ) = 0 < = > ( w . b − z 1 . b ) ( z 2 . a − z 1 . a ) = ( w . a − z 1 . a ) ( z 2 . b − z 1 . b ) I ( z 3 − z 2 w − z 2 ) = 0 < = > ( w . b − z 2 . b ) ( z 3 . a − z 2 . a ) = ( w . a − z 2 . a ) ( z 3 . b − z 2 . b ) I ( z 1 − z 3 w − z 3 ) = 0 < = > ( w . b − z 3 . b ) ( z 1 . a − z 3 . a ) = ( w . a − z 3 . a ) ( z 1 . b − z 3 . b ) I ( i z 2 − z 1 w − z 4 ) = 0 < = > ( w . a − z 4 . a ) ( z 2 . a − z 1 . a ) = − ( w . b − z 4 . b ) ( z 2 . b − z 1 . b ) I ( i z 3 − z 2 w − z 4 ) = 0 < = > ( w . a − z 4 . a ) ( z 3 . a − z 2 . a ) = − ( w . b − z 4 . b ) ( z 3 . b − z 2 . b ) I ( i z 1 − z 3 w − z 4 ) = 0 < = > ( w . a − z 4 . a ) ( z 1 . a − z 3 . a ) = − ( w . b − z 4 . b ) ( z 1 . b − z 3 . b ) = > z 2 . b − z 1 . b z 2 . a − z 1 . a = z 3 . b − z 2 . b z 3 . a − z 2 . a = z 1 . b − z 3 . b z 1 . a − z 3 . a = > I ( z 3 − z 1 z 2 − z 1 ) = ( z 3 . a − z 1 . a ) 2 + ( z 3 . b − z 1 . b ) 2 ( z 2 . b − z 1 . b ) ( z 3 . a − z 1 . a ) − ( z 2 . a − z 1 . a ) ( z 3 . b − z 1 . b ) = 0 .
I posed this problem for the Proofathon Complex Numbers / Trigonometry contest. Unfortunately it didn't make it to the final 8.
Consider any quadruple ( z 1 , z 2 , z 3 , z 4 ) whose neighbor is ( ω 1 , ω 2 , ω 3 ) . Let A , B , C , D , P , Q , R denote the images of z 1 , z 2 , z 3 , z 4 , ω 1 , ω 2 , ω 3 in the complex plane respectively. We shall show that P , Q , R are the feet of perpendiculars from D to A B , B C , C A respectively.
First, note that if z is any point whose image Z lies on line A B , the vector joining Z and B must be a multiple of the vector joining Z and A , so z 2 − z 1 ω 1 − z 1 ∈ R . Now, if z is any point whose image Z lies on the perpendicular from D to A B , the image of e i π / 2 z = i z must lie on A B , and similarly we find out that i z 2 − z 1 ω 1 − z 4 ∈ R . Since ω 1 satisfies all these conditions, we conclude that P is the foot of the perpendicular from D to A B . Similarly, we find out that Q , R are the feet of perpendiculars from D to B C and D to C A respectively.
In case of a popular triple, we have that ω 1 = ω 2 = ω 3 , so the feet of perpendiculars from D to A B , B C , C A coincide. In case of an attractive triple, this happens regardless of the position of D , which is possible if and only if A , B , C are collinear. This implies z 3 − z 2 z 2 − z 1 ∈ R , so ℑ ( z 3 − z 2 z 2 − z 1 ) = 0 .
My problem had a second part: when is ω 3 − ω 1 ω 3 − ω 2 ∈ R ? This is left to the reader. Hint-- Simson lines.
Great work Sreejato! But I one thing I want to clarify is that are you assuming that z 1 , z 2 , z 3 are the vertices of a triangle, because if it isn't so, then can you always have a point D , from which 3 perpendiculars can be drawn to A B , B C , C A ?
Assume: z i = z i . a + i z i . b = > I ( z 2 − z 1 w − z 1 ) = 0 < = > ( w . b − z 1 . b ) ( z 2 . a − z 1 . a ) = ( w . a − z 1 . a ) ( z 2 . b − z 1 . b ) I ( z 3 − z 2 w − z 2 ) = 0 < = > ( w . b − z 2 . b ) ( z 3 . a − z 2 . a ) = ( w . a − z 2 . a ) ( z 3 . b − z 2 . b ) I ( z 1 − z 3 w − z 3 ) = 0 < = > ( w . b − z 3 . b ) ( z 1 . a − z 3 . a ) = ( w . a − z 3 . a ) ( z 1 . b − z 3 . b ) I ( i z 2 − z 1 w − z 4 ) = 0 < = > ( w . a − z 4 . a ) ( z 2 . a − z 1 . a ) = − ( w . b − z 4 . b ) ( z 2 . b − z 1 . b ) I ( i z 3 − z 2 w − z 4 ) = 0 < = > ( w . a − z 4 . a ) ( z 3 . a − z 2 . a ) = − ( w . b − z 4 . b ) ( z 3 . b − z 2 . b ) I ( i z 1 − z 3 w − z 4 ) = 0 < = > ( w . a − z 4 . a ) ( z 1 . a − z 3 . a ) = − ( w . b − z 4 . b ) ( z 1 . b − z 3 . b ) = > z 2 . b − z 1 . b z 2 . a − z 1 . a = z 3 . b − z 2 . b z 3 . a − z 2 . a = z 1 . b − z 3 . b z 1 . a − z 3 . a = > I ( z 3 − z 1 z 2 − z 1 ) = ( z 3 . a − z 1 . a ) 2 + ( z 3 . b − z 1 . b ) 2 ( z 2 . b − z 1 . b ) ( z 3 . a − z 1 . a ) − ( z 2 . a − z 1 . a ) ( z 3 . b − z 1 . b ) = 0 .
Problem Loading...
Note Loading...
Set Loading...
From above condition, The quadruple ( z 1 , z 2 , z 3 , x ) and triple ( w , w , w ) are neighbor. so z 2 − z 1 w − z 1 , z 3 − z 2 w − z 2 , z 1 − z 3 w − z 3 ,
i z 2 − z 1 w − x … … ⓐ ,
i z 3 − z 2 w − x … … ⓑ ,
i z 1 − z 3 w − x ∈ ℜ
ⓐ 1 / ( ⓐ 1 + ⓑ 1 ) = z 3 − z 1 z 2 − z 1 ∈ ℜ so ℑ ( z 3 − z 1 z 2 − z 1 ) = 0