Neither square nor cube root. It's 10th!

Calculus Level 5

0 x 1 10 x 2 + 1 d x = A π B sec ( C π D ) \large\displaystyle \int_{0}^{\infty} \dfrac{x^{\frac{1}{10}}}{x^2+1} \, dx = \dfrac{A\pi}{B}\sec \left(\dfrac{C\pi}{D}\right)

If the equation above holds true for positive integers A , B , C , D A,B,C,D with gcd ( A , B ) = gcd ( C , D ) = 1 \gcd(A,B)=\gcd(C,D)=1 Compute A + B + C + D A+B+C+D .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Refaat M. Sayed
Aug 31, 2016

The integral 0 x 1 10 x 2 + 1 d x = 1 2 0 u 9 20 u + 1 d u ( 1 ) \int \limits^{\infty }_{0}\frac{x^{\frac{1}{10} }}{x^{2}+1} dx= \frac{1}{2} \int \limits^{\infty }_{0}\frac{u^{\frac{-9}{20} }}{u+1} du \ \ \ \ \ \ \ (1) = 1 2 0 u 9 20 u + 1 d u = β ( 1 9 20 , 9 20 ) 2 ( 2 ) = \ \ \ \ \frac{1}{2} \int \limits^{\infty }_{0}\frac{u^{\frac{-9}{20} }}{u+1} du =\frac{\beta \left( 1-\frac{9}{20} , \frac{9}{20} \right) }{2} \ \ \ \ \ \ (2) = Γ ( 1 9 20 ) Γ ( 9 20 ) 2 = π 2 sin ( 9 π 20 ) ( 3 ) =\frac{\Gamma \left( 1-\frac{9}{20} \right) \Gamma \left( \frac{9}{20} \right) }{2} = \frac{\pi }{2\sin \left( \frac{9\pi }{20} \right)} \ \ \ \ \ \ \ \ (3) π 2 sin ( 9 π 20 ) = π 2 sec ( π 20 ) \frac{\pi }{2\sin \left( \frac{9\pi }{20} \right) } =\frac{\pi }{2} \sec \left( \frac{\pi }{20} \right) So A + B + C + D = 24 A+B+C+D= \boxed{24}


( 1 ) (1) use the substitute x 2 = u x^2=u

( 2 ) (2) use the definition of beta function β ( x , y ) = 0 t x 1 ( 1 + t ) x + y d t \beta \left( x,y\right) =\int \limits^{\infty }_{0}\frac{t^{x-1}}{\left( 1+t\right) ^{x+y}} dt

( 3 ) (3) use Euler reflection formula Γ ( x ) Γ ( 1 x ) = π sin ( π x ) \Gamma \left( x\right) \Gamma \left( 1-x\right) =\frac{\pi }{\sin \left( \pi x\right) }

Challenge: try using ramanujan's master theorem. @Pi Han Goh you also try that!

Aditya Kumar - 4 years, 9 months ago

Log in to reply

And you caught where from I developed the problem ;) . It was a special case only if a sun over which I used rmt

Aditya Narayan Sharma - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...