Nesbitt? No!

Algebra Level 3

a b + c + d + b a + c + d + c a + b + d + d a + b + c \dfrac a{b+c+d} + \dfrac b{a+c+d} + \dfrac c{a+b+d} + \dfrac d{a+b+c}

If a , b , c a,b,c and d d are positive real numbers, find the minimum value of the expression above.

Give your answer to 2 decimal places.


The answer is 1.33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Kartik Sharma
Dec 14, 2014

Using re-arrangement inequality,

a S a + b S b + c S c + d S d a S b + b S c + c S d + d S a \frac{a}{S-a} + \frac{b}{S-b} + \frac{c}{S-c} + \frac{d}{S-d} \geq \frac{a}{S-b} + \frac{b}{S-c} + \frac{c}{S-d} + \frac{d}{S-a} where S represents a + b + c + d

Similarly, keeping it in all the permutations and then adding,

n ( a S a + b S b + c S c + d S d ) ( a + b + c + d ) ( 1 S b + 1 S c + 1 S d + 1 S a ) n(\frac{a}{S-a} + \frac{b}{S-b} + \frac{c}{S-c} + \frac{d}{S-d}) \geq (a + b + c + d) (\frac{1}{S-b} + \frac{1}{S-c} + \frac{1}{S-d} + \frac{1}{S-a})

Now using Cauchy Schwarz in Engel form,

1 S b + 1 S c + 1 S d + 1 S a 16 4 S S \frac{1}{S-b} + \frac{1}{S-c} + \frac{1}{S-d} + \frac{1}{S-a} \geq \frac{16}{4S-S}

Substituting,

a S a + b S b + c S c + d S d 16 S 12 S \frac{a}{S-a} + \frac{b}{S-b} + \frac{c}{S-c} + \frac{d}{S-d} \geq \frac{16S}{12S}

4 3 \geq \frac{4}{3}

Well, here we draw a conclusion that a 1 S a 1 + a 2 S a 2 + a 3 S a 3 + . . . . . . + a n S a n n + 1 n \frac{{a}_{1}}{S-{a}_{1}} + \frac{{a}_{2}}{S-{a}_{2}} + \frac{{a}_{3}}{S-{a}_{3}} +...... + \frac{{a}_{n}}{S-{a}_{n}} \geq \frac{n+1}{n} for any n Z + n \in {Z}^{+}

Nice

a S a = S S a 1 \displaystyle \sum \dfrac{a}{S - a} = \sum \dfrac{S}{S - a} - 1

S S a 4 4 S 4 S S \displaystyle \dfrac{\sum \dfrac{S}{S - a}}{4} \geq \dfrac{4S}{4S - S}

S S a 4 1 1 3 \displaystyle \dfrac{\sum \dfrac{S}{S - a}}{4} - 1 \geq \dfrac{1}{3}

thus

S S a 1 4 3 \displaystyle \sum \dfrac{S}{S - a} - 1 \geq \dfrac{4}{3}

U Z - 6 years, 5 months ago
Omkar Kamat
Dec 21, 2014

We can use Jensen's inequality. Since the equation is homogeneous, we can assume that a+b+c+d=1. So the expression becomes a/(1-a)+b/(1-b)+c/(1-c)+d/(1-d). Now consider f(x)=x/(1-x). The second derivative of this is 2/(1-x)^3 which is positive as 0<x<1 This means that the function is convex.

So we know that 1/4((a/(1-a)+b/(1-b)+c/(1-c)+d/(1-d))>= f(1/4)=1/3.

Multiply by 4 to get the required answer.

Aside: We can generalise this argument where the denominator has n terms to get that the sum is >= n+1/n .

The problem is the n = 4 n = 4 case of the generalised nestbitt's inequality .

Moderator note:

Yes it is. What is your favourite approach to the generalized version?

Nice link! Thanks for sharing!!

Pi Han Goh - 5 years, 2 months ago
P C
Mar 16, 2016

Call the expression P. We have S = a ( b + c + d ) + b ( c + d + a ) + c ( d + a + b ) + d ( a + b + c ) = 2 [ ( a + d ) ( b + c ) + a d + b c ] S=a(b+c+d)+b(c+d+a)+c(d+a+b)+d(a+b+c)=2[(a+d)(b+c)+ad+bc] Using Cauchy-Schwarz Inequality we get P . S ( a + b + c + d ) 2 P.S\geq (a+b+c+d)^2 By AM-GM, we get S 2 ( a + d ) 2 4 + ( b + c ) 2 4 + ( a + d ) ( b + c ) 2 + ( a + d ) ( b + c ) 2 ( a + b + c + d ) 2 4 + ( a + b + c + d ) 2 8 \frac{S}{2}\leq \frac{(a+d)^2}{4}+\frac{(b+c)^2}{4}+\frac{(a+d)(b+c)}{2}+\frac{(a+d)(b+c)}{2}\leq \frac{(a+b+c+d)^2}{4}+\frac{(a+b+c+d)^2}{8} S 3 4 ( a + b + c + d ) 2 \Rightarrow S\leq\frac{3}{4}(a+b+c+d)^2 P 4 3 \therefore P\geq\frac{4}{3} The equality holds when a = b = c = d a=b=c=d

Since interchanging a, b, c, d does not change the expression, if all are equal, we get extreme value. Since the expression has > in it, the expression with a=b=c=d could be the maximum. Thus we get 1.333. I am not sure my logic is correct.

In response to Niranjan Khaderia :This is not a solution this is a method for finding the answer in symmetric inequalities ,but this is not a solution !

Kristian Vasilev - 6 years, 6 months ago

Log in to reply

You are right in stating that permuting a,b,c,d does not change the value of the expression. However, that does not mean that the minimum will occur when all of the terms are equal. It could be that 4/3 is a stationary point of the function but not a minimum point.

Omkar Kamat - 6 years, 5 months ago

I answered it wrong but I have a solution,

a b + c + d + b a + c + d + c a + b + d + d a + b + c 1 + a b + c + d + 1 + b a + c + d + 1 + c a + b + d + 1 + d a + b + c 4 ( a + b + c + d ) ( 1 b + c + d + 1 a + c + d + 1 a + b + d + 1 a + b + c ) 4 1 3 [ ( b + c + d ) + ( a + c + d ) + ( a + b + d ) + ( a + b + c ) ] ( 1 b + c + d + 1 a + c + d + 1 a + b + d + 1 a + b + c ) 4 = S \frac a{b+c+d} + \frac b{a+c+d} + \frac c{a+b+d} + \frac d{a+b+c} \\ 1+\frac a{b+c+d} + 1+\frac b{a+c+d} +1+ \frac c{a+b+d} + 1+\frac d{a+b+c}-4 \\ (a+b+c+d)\left( \frac 1{b+c+d} + \frac 1{a+c+d} + \frac 1{a+b+d} + \frac 1{a+b+c} \right)-4 \\ \frac{1}{3} [(b+c+d)+(a+c+d)+(a+b+d)+(a+b+c)] \left( \frac 1{b+c+d} + \frac 1{a+c+d} + \frac 1{a+b+d} + \frac 1{a+b+c} \right)-4=S

Let, ( b + c + d ) = w , ( a + c + d ) = x , ( a + b + d ) = y (b+c+d)=w,(a+c+d)=x,(a+b+d)=y and ( a + b + c ) = z (a+b+c)=z .

3 S = ( w + x + y + z ) ( 1 w + 1 x + 1 y + 1 z ) 12 3S= (w+x+y+z)\left( \frac{1}{w}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-12

Now applying AM-HM inequality on,

( w + x + y + z ) ( 1 w + 1 x + 1 y + 1 z ) 16 (w+x+y+z)\left( \frac{1}{w}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\geq 16

Therefore,

3 S 16 12 S 4 3 3S\geq 16-12 \Rightarrow S\geq \frac{4}{3}

Akshat Sharda - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...