Nested everything

Algebra Level 3

We define x x x x . . . = 3 x^{x^{x^{x^{...}}}}=3

y = 4 4 4 . . . y=\sqrt{4{\sqrt{4{\sqrt{4{\sqrt{...}}}}}}}

z = 5 + 5 + 5 + . . . z=\sqrt{5+\sqrt{5+{\sqrt{5+\sqrt{...}}}}}

If x 3 + y + z = a + b c x^{3} +y+z=\frac{a+\sqrt{b}}{c} find a + b 3 c \frac{a+b}{3c}

6 0 12 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alex Li
Jun 4, 2015

The first equation is equivalent to x 3 = 3 x^3=3 , or x = 3 3 x=\sqrt[3]{3} . The second is equivalent to y = 4 y y 2 = 4 y y = 4 y=\sqrt{4y}\rightarrow y^2=4y\rightarrow y=4 . The third is equivalent to z = 5 + z z 2 = 5 + z z = 1 + 21 2 z=\sqrt{5+z}\rightarrow z^2=5+z \rightarrow z=\frac{1+\sqrt{21}}{2} . Thus, x 3 + y + z = 3 + 4 + 1 + 21 2 = 15 + 21 2 x^3+y+z=3+4+\frac{1+\sqrt{21}}{2}=\frac{15+\sqrt{21}}{2} , so a + b 3 c = 15 + 21 3 × 2 = 6 \frac{a+b}{3c}=\frac{15+21}{3\times2}=\boxed{6} .

Rama Devi
Jul 4, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...