Nested fractions trig equation from the Czech version of SAT

Geometry Level 3

Solve for x ( 2 π 3 , 2 π ) x \in \left( \frac{2\pi} {3} , 2 \pi \right) . Submit your answer in degrees.

2 3 cos x = 1 2 tan x + 1 2 tan x + 1 2 tan x + \large \frac{2}{3} \cos x = \frac{ 1 } { 2 \tan x + \frac{ 1 } { 2 \tan x + \frac{ 1 } { 2 \tan x + \cdots } } }

This problem was given to the Czech grammar school students graduating in 1867 1867 in a Czech version of SAT.


The answer is 150.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 21, 2020

2 3 cos x = 1 2 tan x + 1 2 tan x + 1 2 tan + = 1 2 tan x + 2 3 cos x 3 2 cos x = 2 tan x + 2 3 cos x 9 = 12 sin x + 4 cos 2 x 9 = 12 sin x + 4 ( 1 sin 2 x ) 4 sin 2 x 12 sin x + 5 = 0 ( 2 sin x 1 ) ( 2 sin x 5 ) = 0 Since sin x 1 sin x = 1 2 x = 150 For x ( 9 0 , 36 0 ) \begin{aligned} \frac 23 \cos x & = \frac 1{2\tan x + \frac 1{2\tan x + \frac 1{2\tan + \cdots}}} \\ & = \frac 1{2\tan x + \frac 23 \cos x} \\ \frac 3{2\cos x} & = 2 \tan x + \frac 23 \cos x \\ 9 & = 12 \sin x + 4 \cos^2 x \\ 9 & = 12 \sin x + 4 (1-\sin^2 x) \\ 4\sin^2 x - 12\sin x + 5 & = 0 \\ (2\sin x - 1)(2\sin x - 5) & = 0 & \small \blue{\text{Since }\sin x \le 1} \\ \implies \sin x & = \frac 12 \\ \implies x & = \boxed {150}^\circ & \small \blue{\text{For }x \in (90^\circ, 360^\circ)} \end{aligned}

I'm confused whether the interval is open or closed. So I assume that it is open.

R. H. S. of the given equation is equal to sec x tan x \sec x-\tan x . So 2 cos 2 x = 3 3 sin x 2\cos^2 x=3-3\sin x

2 sin 2 x 3 sin x + 1 = 0 sin x = 1 \implies 2\sin^2 x-3\sin x+1=0\implies \sin x=1 or sin x = 1 2 \sin x=\dfrac {1}{2} .

x = 90 ° \implies x=90\degree or x = 150 ° x=150\degree . Assuming open interval, x = 150 ° x=\boxed {150\degree} .

tan π 2 \tan \frac{\pi}{2} is not even defined, sir.

Tomáš Hauser - 11 months, 3 weeks ago

Log in to reply

But 1 tan π 2 = 0 \dfrac {1}{\tan \frac{π}{2}}=0 .

A Former Brilliant Member - 11 months, 3 weeks ago

The usual convention is curved brackets ( a , b ) (a,b) for an open interval a < x < b a<x<b and square brackets [ a , b ] [a,b] for a closed interval a x b a\le x\le b ; for example see here .

Chris Lewis - 11 months, 3 weeks ago

We write it differently in the Czech Republic. I changed it to 120 degrees so that people will not be confused about the 90 degrees answer.

Tomáš Hauser - 11 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...