Nested fractions

Calculus Level 3

Since 1 + 2 + 3 + < 2 \large \sqrt{1 + \sqrt{2 + \sqrt{ 3+\sqrt{\cdots}}}} < 2 True or false 1 2 + 1 3 + 1 4 + < 1 \large \sqrt{\frac{1}{2} + \sqrt{\frac{1}{3} + \sqrt{ \frac{1}{4} +\sqrt{\cdots}}}} <1

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Romain Bouchard
Jan 13, 2018

We can easily verify that 1 2 + 1 3 1.04 \sqrt{\frac{1}{2}+\sqrt{\frac{1}{3}}} \approx 1.04 so x > 0 , 1 2 + 1 3 + x > 1 \forall x > 0, \sqrt{\frac{1}{2}+\sqrt{\frac{1}{3}+x}} > 1

James Wilson
Jan 3, 2021

1 2 + 1 3 + 1 4 + . . . < 1 \sqrt{\frac{1}{2}+\sqrt{\frac{1}{3}+\sqrt{\frac{1}{4}+\sqrt{...}}}}<1 1 2 + 1 3 + 1 4 + . . . < 1 2 \Leftrightarrow \frac{1}{2}+\sqrt{\frac{1}{3}+\sqrt{\frac{1}{4}+\sqrt{...}}}<1^2 1 3 + 1 4 + . . . < 1 2 \Leftrightarrow \sqrt{\frac{1}{3}+\sqrt{\frac{1}{4}+\sqrt{...}}}<\frac{1}{2} 1 3 + 1 4 + . . . < 1 4 \Leftrightarrow \frac{1}{3}+\sqrt{\frac{1}{4}+\sqrt{...}}<\frac{1}{4} 1 4 + . . . < 1 12 \Leftrightarrow \sqrt{\frac{1}{4}+\sqrt{...}} <-\frac{1}{12} The left-hand-side is positive, which can't be less than a negative number.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...