7 terms lo g 2 x + lo g 2 x + lo g 2 x + ⋯ + lo g 2 x = 1 0 1 6
Find the value of x .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Just like other function such as \frac xy y x or \sqrt 2 2 , you need to put a backslash \ before \log_{\sqrt x} lo g x , \tan x tan x \sin x sin x \cos x cos x and all that. Note that function names should not be in italic which is for constants and variables. Also note that there is a space between the function name and variable log x l o g x (see no space even if you put in a few) but \log x lo g x (there is a space).
lo g 2 x + lo g 2 x + lo g 2 x + ⋯ + lo g 2 x 2 1 lo g 2 lo g x + 4 1 lo g 2 lo g x + 8 1 lo g 2 lo g x + ⋯ + 2 7 1 lo g 2 lo g x lo g 2 lo g x ( 2 + 2 2 + 2 3 + ⋯ + 2 7 ) lo g 2 lo g x × 2 × 2 − 1 2 7 − 1 lo g 2 lo g x lo g x ⟹ x = 1 0 1 6 = 1 0 1 6 = 1 0 1 6 = 1 0 1 6 = 4 = 4 lo g 2 = 2 4 = 1 6
Problem Loading...
Note Loading...
Set Loading...
The given expression simplifies to
lo g 2 2 1 x + lo g 2 4 1 x + ⋯ + lo g 2 1 2 8 1 x = 1 0 1 6 .
We know that lo g a m = lo g b a lo g b m If a = 1 , b = 1 . We take the base b as 2 .
⟹ lo g 2 2 2 1 lo g 2 x + lo g 2 2 4 1 lo g 2 x + ⋯ + lo g 2 2 1 2 8 1 lo g 2 x = 1 0 1 6
⟹ 2 1 lo g 2 x + 4 1 lo g 2 x + ⋯ + 1 2 8 1 lo g 2 x = 1 0 1 6 .
⟹ 2 × lo g 2 x + 4 × lo g 2 x + 8 × lo g 2 x + ⋯ + 1 2 8 × lo g 2 x = 1 0 1 6 .
⟹ lo g 2 x × ( 2 + 4 + 8 + 1 6 + 3 2 + 6 4 + 1 2 8 ) = 1 0 1 6 .
⟹ lo g 2 x × 2 5 4 = 1 0 1 6 .
⟹ lo g 2 x = 4 .
⟹ x = 1 6