Let
be a fixed odd positive integer and extend the above pentagrams to
-grams.
For each positive integer , let be the -gram inscribed in the circle and be the circle inscribed in the -gram .
Let be the radius of each circle .
If and , find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let n ≥ 5 be a fixed positive odd integer.
m ∠ A O P = n π and by Inscribed Angle Theorem m ∠ E P F = 2 1 m ∠ E O F ⟹
m ∠ A P O = 2 n π
O C A C = tan ( n π ) ⟹ O C = tan ( n π ) A C and
P C = tan ( 2 n π ) A C = r 1 − O C = r 1 − tan ( n π ) A C ⟹
r 1 = tan ( n π ) A C + tan ( 2 n π ) A C ⟹ A C ( tan ( 2 n π ) tan ( n π ) tan ( n π ) + tan ( 2 n π ) ) = r 1
⟹ h = A C = tan ( n π ) + tan ( 2 n π ) tan ( 2 n π ) tan ( n π ) r 1
tan ( n π ) = tan ( 2 n 2 π ) = 1 − tan 2 ( 2 n π ) 2 tan ( 2 n π ) ⟹
h = 3 − tan 2 ( 2 n π ) 2 tan ( 2 n π ) r 1
Let β ( n ) = 3 − tan 2 ( 2 n π ) tan ( 2 n π ) ⟹ h 1 = 2 β ( n ) r 1 = r 2 sin ( n π ) ⟹ r 2 = sin ( n π ) 2 β ( n ) r 1
In General r m = ( sin ( n π ) 2 β ( n ) ) m − 1 r 1 and R ( n ) = m = 1 ∑ ∞ r m = sin ( n π ) − 2 β ( n ) sin ( n π ) r 1 .
For j ( n ) = 2 β ( n ) ⟹ j ′ ( n ) = − n 2 π sec 2 ( 2 n π ) ( ( 3 − tan 2 ( 2 n π ) ) 2 3 + tan 2 ( 2 n π ) )
⟹ R = lim n → ∞ R ( n ) = lim n → ∞ − cos ( n π ) + sec 2 ( 2 n π ) ( ( 3 − tan 2 ( 2 n π ) ) 2 3 + tan 2 ( 2 n π ) ) − cos ( n π ) r 1
= 2 3 r 1 ⟹ r 1 R = 2 3 = 1 . 5