Nested Pentagrams and Circles!

Level pending

For each positive integer n n , let P n P_{n} be the Pentagram inscribed in the circle C n C_{n} and C n + 1 C_{n + 1} be the circle inscribed in the Pentagram P n P_{n} .

Let r n r_{n} be the radius of each circle C n C_{n} .

If R = n = 1 r n R = \sum_{n = 1}^{\infty} r_{n} and R r 1 = a + b c \dfrac{R}{r_{1}} = \dfrac{a + \sqrt{b}}{c} , where a , b a,b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 7, 2020

m A O P = π 5 m\angle{AOP} = \dfrac{\pi}{5} and by Inscribed Angle Theorem m E P F = 1 2 m E O F m A P O = π 10 m\angle{EPF} = \dfrac{1}{2}m\angle{EOF} \implies m\angle{APO} = \dfrac{\pi}{10}

A C O C = tan ( π 5 ) O C = A C tan ( π 5 ) \dfrac{AC}{OC} = \tan(\dfrac{\pi}{5}) \implies OC = \dfrac{AC}{\tan(\dfrac{\pi}{5})} and P C = A C tan ( π 10 ) = r 1 O C = r 1 A C tan ( π 5 ) PC = \dfrac{AC}{\tan(\dfrac{\pi}{10})} = r_{1} - OC = r_{1} - \dfrac{AC}{\tan(\dfrac{\pi}{5})} \implies

r 1 = A C tan ( π 5 ) + A C tan ( π 10 ) r_{1} = \dfrac{AC}{\tan(\dfrac{\pi}{5})} + \dfrac{AC}{\tan(\dfrac{\pi}{10})} \implies A C ( tan ( π 5 ) + tan ( π 10 ) tan ( π 10 ) tan ( π 5 ) ) = r 1 AC(\dfrac{\tan(\dfrac{\pi}{5}) + \tan(\dfrac{\pi}{10})}{\tan(\dfrac{\pi}{10})\tan(\dfrac{\pi}{5})}) = r_{1}

h = A C = tan ( π 10 ) tan ( π 5 ) tan ( π 5 ) + tan ( π 10 ) r 1 \implies h = AC = \dfrac{\tan(\dfrac{\pi}{10})\tan(\dfrac{\pi}{5})}{\tan(\dfrac{\pi}{5}) + \tan(\dfrac{\pi}{10})}r_{1}

tan ( π 5 ) = tan ( 2 π 10 ) = 2 tan ( π 10 ) 1 tan 2 ( π 10 ) \tan(\dfrac{\pi}{5}) = \tan(\dfrac{2\pi}{10}) = \dfrac{2\tan(\dfrac{\pi}{10})}{1 - \tan^2(\dfrac{\pi}{10})} \implies h = 2 tan ( π 10 ) 3 tan 2 ( π 10 ) r 1 h = \dfrac{2\tan(\dfrac{\pi}{10})}{3 - \tan^2(\dfrac{\pi}{10})}r_{1}

Let β = tan ( π 10 ) 3 tan 2 ( π 10 ) h 1 = 2 β r 1 = r 2 sin ( π 5 ) \beta = \dfrac{\tan(\dfrac{\pi}{10})}{3 - \tan^2(\dfrac{\pi}{10})} \implies h_{1} = 2\beta r_{1} = r_{2}\sin(\dfrac{\pi}{5}) r 2 = 2 β sin ( π 5 ) r 1 \implies \boxed{r_{2} = \dfrac{2\beta}{\sin(\dfrac{\pi}{5})}r_{1}}

In General r n = ( 2 β sin ( π 5 ) ) n 1 r 1 \boxed{r_{n} = (\dfrac{2\beta}{\sin(\dfrac{\pi}{5})})^{n - 1}r_{1}} and R = n = 1 r n = sin ( π 5 ) sin ( π 5 ) 2 β r 1 R = \displaystyle\sum_{n = 1}^{\infty} r_{n} = \dfrac{\sin(\dfrac{\pi}{5})}{\sin(\dfrac{\pi}{5}) - 2\beta}r_{1} .

Let u = tan ( x 2 ) u 2 = 1 cos ( x ) 1 + cos ( x ) = sin 2 ( x ) ( 1 + cos ( x ) ) 2 u = sin ( x ) 1 + cos ( x ) u = \tan(\dfrac{x}{2}) \implies u^2 = \dfrac{1 - \cos(x)}{1 + \cos(x)} = \dfrac{\sin^2(x)}{(1 + \cos(x))^2} \implies u = \dfrac{\sin(x)}{1 + \cos(x)} and u 2 = 1 cos ( x ) 1 + cos ( x ) cos ( x ) = 1 u 2 1 + u 2 sin ( x ) = 2 u 1 + u 2 u^2 = \dfrac{1 - \cos(x)}{1 + \cos(x)} \implies \cos(x) = \dfrac{1 - u^2}{1 + u^2} \implies \sin(x) = \dfrac{2u}{1 + u^2} and u = tan ( x 2 ) u = \tan(\dfrac{x}{2})

Let x = π 5 u = tan ( π 10 ) β = u 3 u 2 x = \dfrac{\pi}{5} \implies u = \tan(\dfrac{\pi}{10}) \implies \beta = \dfrac{u}{3 - u^2} and sin ( π 5 ) = 2 u 1 + u 2 \sin(\dfrac{\pi}{5}) = \dfrac{2u}{1 + u^2}

R = 3 u 2 2 ( 1 u 2 ) r 1 \implies R = \dfrac{3 - u^2}{2(1 - u^2)}r_{1} and u = tan ( π 10 ) = 1 5 25 10 5 R = ( 1 2 ) ( 5 + 5 5 ) r 1 = ( 1 + 5 2 ) r 1 R r 1 = 1 + 5 2 = a + b c u = \tan(\dfrac{\pi}{10}) = \dfrac{1}{5}\sqrt{25 - 10\sqrt{5}} \implies R = (\dfrac{1}{2})(\dfrac{5 + \sqrt{5}}{\sqrt{5}})r_{1} = (\dfrac{1 + \sqrt{5}}{2})r_{1} \implies \dfrac{R}{r_{1}} = \boxed{\dfrac{1 + \sqrt{5}}{2}} = \dfrac{a + \sqrt{b}}{c} a + b + c = 8 \implies a + b + c = \boxed{8}

Note: To show u = tan ( π 10 ) = 1 5 25 10 5 u = \tan(\dfrac{\pi}{10}) = \dfrac{1}{5}\sqrt{25 - 10\sqrt{5}} :

( 1 ) : (1): Obtain sin ( 5 θ ) = 16 sin 5 ( θ ) 20 sin 3 ( θ ) + 5 sin ( θ ) \sin(5\theta) = 16\sin^5(\theta) - 20\sin^3(\theta) + 5\sin(\theta) using cos ( 5 θ ) + i sin ( 5 θ ) = ( cos ( θ ) + i sin ( θ ) ) 5 \cos(5\theta) + i\sin(5\theta) = (\cos(\theta) + i\sin(\theta))^5 and equate imaginary terms.

( 2 ) : (2): Let θ = π 5 \theta = \dfrac{\pi}{5} and x = sin ( θ ) x = \sin(\theta) obtaining x ( 16 x 4 20 x 2 + 5 ) = 0 x(16x^4 - 20x^2 + 5) = 0

and x 0 x = 5 5 8 x \neq 0 \implies x = \dfrac{\sqrt{5 - \sqrt{5}}}{8} (dropping the root for which x > 1 x > 1 )

cos ( θ ) = 3 + 5 8 = ( 1 + 5 ) 2 16 = 1 2 ϕ \implies \cos(\theta) = \sqrt{\dfrac{3 + \sqrt{5}}{8}} = \sqrt{\dfrac{(1 + \sqrt{5})^2}{16}} = \dfrac{1}{2}\phi

tan ( π 10 ) = 1 ϕ 2 1 + ϕ 2 = \implies \tan(\dfrac{\pi}{10}) = \sqrt{\dfrac{1 - \dfrac{\phi}{2}}{1 + \dfrac{\phi}{2}}} = 3 5 5 + 5 = \sqrt{\dfrac{3 - \sqrt{5}}{5 + \sqrt{5}}} =

20 8 5 20 = 5 2 5 5 = 1 5 25 10 5 \sqrt{\dfrac{20 - 8\sqrt{5}}{20}} = \sqrt{\dfrac{5 - 2\sqrt{5}}{5}} = \dfrac{1}{5}\sqrt{25 - 10\sqrt{5}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...