Nested Radical Calculus

Calculus Level 3

What is the derivative of

x + x + x + . . . ? \large\sqrt{x+\sqrt{x+\sqrt{x+...}}} \textbf{?}

1 2 x + x + x + . . . \frac{1}{2\sqrt{x+\sqrt{x+\sqrt{x+...}}}} 1 4 x + 1 \frac{1}{\sqrt{4x+1}} Can't say for sure. 4 4 x + 1 \frac{4}{\sqrt{4x+1}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Andrei Li
Nov 17, 2018

f ( x ) = x + x + x + . . . = x + f ( x ) f(x)=\sqrt{x+\sqrt{x+\sqrt{x+...}}}=\sqrt{x+f(x)} f ( x ) 2 = f ( x ) + x f ( x ) 2 f ( x ) x = 0 \implies f(x)^2=f(x)+x\implies f(x)^2-f(x)-x=0

Solve for f ( x ) f(x) using the quadratic formula:

1 + 4 x + 1 2 = 1 2 ( 4 x + 1 1 ) \frac{-1+\sqrt{4x+1}}{2}=\frac{1}{2}(\sqrt{4x+1}-1)

Now take the derivative using the chain rule:

d d x ( 1 2 ( ( 4 x + 1 ) 1 2 1 ) = ( 4 ) ( 1 2 ) ( 1 2 4 x + 1 ) = 1 4 x + 1 \frac{d}{dx}(\frac{1}{2}((4x+1)^{\frac{1}{2}}-1)=(4)(\frac{1}{2})(\frac{1}{2\sqrt{4x+1}})=\boxed{\frac{1}{\sqrt{4x+1}}}

Chew-Seong Cheong
Nov 18, 2018

Similar solution with @Andrei Li 's

Let y y be the nested radical. Then

y = x + x + x + Squaring both sides y 2 = x + x + x + x + = x + y y 2 y x = 0 Solving the quadratic for y . y = 1 + 4 x + 1 2 Note that y > 0 \begin{aligned} y & = \sqrt{x+\sqrt{x+\sqrt{x+\cdots}}} & \small \color{#3D99F6} \text{Squaring both sides} \\ y^2 & = x + \sqrt{x+\sqrt{x+\sqrt{x+\cdots}}} \\ & = x + y \\ y^2 - y - x & = 0 & \small \color{#3D99F6} \text{Solving the quadratic for }y. \\ y & = \frac {1+\sqrt{4x+1}}2 & \small \color{#3D99F6} \text{Note that }y > 0 \end{aligned}

From

y 2 y x = 0 Differentiate both sides w.r.t. x ( 2 y 1 ) d y d x 1 = 0 d y d x = 1 2 y 1 Recall y = 1 + 4 x + 1 2 = 1 4 x + 1 \begin{aligned} y^2 - y - x & = 0 & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x \\ (2y - 1)\frac {dy}{dx} - 1 & = 0 \\ \frac {dy}{dx} & = \frac 1{{\color{#3D99F6}2y}-1} & \small \color{#3D99F6} \text{Recall }y = \frac {1+\sqrt{4x+1}}2 \\ & = \boxed{\dfrac 1{\sqrt{4x+1}}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...