Nested radical differentiation

Calculus Level 3

y = x + x x + x x + y = \sqrt{x+\sqrt{x-\sqrt{x+\sqrt{x-\sqrt{x+\cdots}}}}}

If d y d x x = 3 \left. \dfrac{dy}{dx} \right|_{x=3} can be represented in the form a b \dfrac{a}{b} , where a , b a, b are coprime positive integers , find a + b a + b .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 31, 2016

y = x + x x + x x + y = x + x y y 2 = x + x y ( y 2 x ) 2 = x y \begin{aligned} y & = \sqrt{x + \sqrt{x- \color{#3D99F6}{ \sqrt{x + \sqrt{x - \sqrt{x + \cdots }}}}}} \\ y & = \sqrt{x + \sqrt{x - \color{#3D99F6}{y}}} \\ y^2 & = x + \sqrt{x - y} \\ (y^2-x)^2 & = x-y \end{aligned}

y 4 2 x y 2 + x 2 x + y = 0 Putting x = 3 y 4 6 y 2 + y + 6 = 0 ( y + 1 ) ( y 3 y 2 5 y + 6 ) = 0 ( y + 1 ) ( y 2 ) ( y 2 + y 3 ) = 0 y = 1 , 2 , ± 13 1 2 \begin{aligned} \implies y^4 - 2xy^2 + x^2 -x + y & = 0 & \small \color{#3D99F6}{\text{Putting }x=3} \\ y^4 - 6y^2 + y + 6 & = 0 \\ (y+1)(y^3-y^2 -5y +6) & = 0 \\ (y+1)(y-2)(y^2+y-3) & = 0 \\ \implies y = -1, \ \color{#3D99F6}{2}, \ \frac {\pm \sqrt{13}-1}2 \end{aligned}

Substituting the four likely solutions of y y and x = 3 x=3 in y = x + x y y = \sqrt{x + \sqrt{x - y}} , we find that only y = 2 y=2 is the solution. Now, we have:

y 4 2 x y 2 + x 2 x + y = 0 4 y 3 d y d x 2 y 2 4 x y d y d x + 2 x 1 + d y d x = 0 Putting x = 3 , y = 2 32 d y d x x = 3 8 24 d y d x x = 3 + 6 1 + d y d x x = 3 = 0 9 d y d x x = 3 = 3 d y d x x = 3 = 1 3 \begin{aligned} y^4 - 2xy^2 + x^2 -x + y & = 0 \\ 4y^3 \frac{dy}{dx} - 2y^2 - 4xy \frac{dy}{dx} + 2x -1+\frac{dy}{dx} & = 0 & \small \color{#3D99F6}{\text{Putting }x=3, \ y= 2} \\ 32 \frac{dy}{dx}\bigg|_{x=3} - 8 - 24 \frac{dy}{dx}\bigg|_{x=3} + 6 -1+\frac{dy}{dx}\bigg|_{x=3} & = 0 \\ 9 \frac{dy}{dx}\bigg|_{x=3} & = 3 \\ \implies \frac{dy}{dx}\bigg|_{x=3} & = \frac 13 \end{aligned}

a + b = 1 + 3 = 4 \implies a + b = 1 + 3 = \boxed{4}

Makes me enlightened.

A Former Brilliant Member - 4 years, 10 months ago

Can be solved more easily by introducing another variable.

Abhi Kumbale - 4 years, 10 months ago

No need to substitute all the 4 4 values of x x . From the equation in second line at x = 3 x\,=\,3 , it follows that y / , 3 y/,≤\,3 .

Aditya Sky - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...