y = x + x − x + x − x + ⋯
If d x d y ∣ ∣ ∣ ∣ x = 3 can be represented in the form b a , where a , b are coprime positive integers , find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Makes me enlightened.
Can be solved more easily by introducing another variable.
No need to substitute all the 4 values of x . From the equation in second line at x = 3 , it follows that y / , ≤ 3 .
Problem Loading...
Note Loading...
Set Loading...
y y y 2 ( y 2 − x ) 2 = x + x − x + x − x + ⋯ = x + x − y = x + x − y = x − y
⟹ y 4 − 2 x y 2 + x 2 − x + y y 4 − 6 y 2 + y + 6 ( y + 1 ) ( y 3 − y 2 − 5 y + 6 ) ( y + 1 ) ( y − 2 ) ( y 2 + y − 3 ) ⟹ y = − 1 , 2 , 2 ± 1 3 − 1 = 0 = 0 = 0 = 0 Putting x = 3
Substituting the four likely solutions of y and x = 3 in y = x + x − y , we find that only y = 2 is the solution. Now, we have:
y 4 − 2 x y 2 + x 2 − x + y 4 y 3 d x d y − 2 y 2 − 4 x y d x d y + 2 x − 1 + d x d y 3 2 d x d y ∣ ∣ ∣ ∣ x = 3 − 8 − 2 4 d x d y ∣ ∣ ∣ ∣ x = 3 + 6 − 1 + d x d y ∣ ∣ ∣ ∣ x = 3 9 d x d y ∣ ∣ ∣ ∣ x = 3 ⟹ d x d y ∣ ∣ ∣ ∣ x = 3 = 0 = 0 = 0 = 3 = 3 1 Putting x = 3 , y = 2
⟹ a + b = 1 + 3 = 4