3 5 3 5 3 5

Algebra Level 2

3 5 3 5 = ? \large \sqrt{\color{#3D99F6}3\sqrt{\color{#20A900}5\sqrt{\color{#3D99F6}3\sqrt{\color{#20A900}5\cdots}}}} = \ \color{#624F41}?

45 2 \sqrt[2]{45} 45 3 \sqrt[3]{45} 45 4 \sqrt[4]{45} 45 1 \sqrt[1]{45}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sakanksha Deo
Mar 3, 2015

Let,

x = 3 5 3 5..... x = \sqrt{3 \sqrt{5 \sqrt{3 \sqrt{5 .....}}}}

Now squaring both sides, we get

x 2 = 3 5 3 5..... x^{2} = 3 \sqrt{5 \sqrt{3 \sqrt{5 .....}}}

Again squaring both sides, we get

x 4 = 9 × 5 3 5 3 5..... x^{4} = 9 \times 5 \sqrt{3 \sqrt{5 \sqrt{3 \sqrt{5 .....}}}}

x 4 = 45 x \Rightarrow x^{4} = 45x

x 3 = 45 \Rightarrow x^{3} = 45

x = 45 3 \Rightarrow x = \sqrt[3]{45}

That's the way (aha aha) I like it! (aha aha)

jake roosenbloom - 5 years, 5 months ago

Exactly what I did :)

Mahtab Hossain - 6 years, 2 months ago

A = 3 5 3 5 = 3 2 5 3 2 5 = 45 45 45 45 4 4 4 4 = 45 4 45 16 45 64 = 4 5 1 4 + 1 16 + 1 64 + \begin{aligned} A&=&\ \ {\sqrt{3\sqrt{5\sqrt{3\sqrt{5\cdots}}}}} \\ \,&=&\ \ \sqrt{\sqrt{3^2\cdot5\sqrt{\sqrt{3^2\cdot5\cdots}}}}\\ \,&=&\ \ \sqrt[4]{45\sqrt[4]{45\sqrt[4]{45\sqrt[4]{45\cdots}}}}\\ \,&=&\ \ \sqrt[4]{45}\cdot \sqrt[16]{45}\cdot \sqrt[64]{45}\cdots\\ \,&=&\ \ 45^{\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\dots}\\ \end{aligned}
1 4 + 1 16 + 1 64 + = 1 4 1 1 1 4 = 1 3 \frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\dots = \frac{1}{4}\cdot \frac{1}{1-\frac{1}{4}}=\frac{1}{3}
A = 45 3 A=\sqrt[3]{45}

Aravind Vishnu
Mar 26, 2015

Let y = 3 5 3 5 therefore y = 3 5 y y 2 3 = 5 y y 4 45 = y y 4 45 y = 0 y ( y 3 45 ) = 0 either y = 0 or y = 45 3 since y 0 we have y = 45 3 \text{Let}\, y = \sqrt{\color{#3D99F6}3\sqrt{\color{#20A900}5\sqrt{\color{#3D99F6}3\sqrt{\color{#20A900}5 \cdots}}}} \\ \text{therefore}\, y = \sqrt{\color{#3D99F6}3\sqrt{\color{#20A900}5y}} \\ \frac{y^2}{\color{#3D99F6}3} = \sqrt{\color{#20A900}5y}\\ \frac{y^4}{45}=y\\ y^4 - 45y=0\\ y(y^3-45)=0 \\ \text{either}\, y=0\quad \text{or}\, y= \sqrt[3]{45}\\ \text{since}\, y \ne 0 \quad \text{we have}\, y= \sqrt[3]{45}

How did you bring it to "y⁴ - 45y"?

Akhash Raja Raam - 5 years, 4 months ago

Log in to reply

squarring both sides and cross multiplication will do.

Aravind Vishnu - 5 years, 1 month ago

Log in to reply

Oh, now I see it, thanks!

Akhash Raja Raam - 4 years, 11 months ago
Curtis Clement
Feb 19, 2015

3 5 3 5 = x = ( x 2 3 ) 2 × 1 5 = x 4 45 45 x = x 4 x = 4 5 1 3 \sqrt{3\sqrt{5\sqrt{3\sqrt{5\cdots}}}} = x = (\frac{x^2}{3})^2 \times\dfrac{1}{5} = \frac{x^4}{45}\implies\ 45x = x^4 \therefore x = 45^{\frac{1}{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...