Let n ≥ 4 be a fixed positive integer.
For each positive integer m ,
Let V p ( m ) be the volume of the largest n -gonal pyramid inscribed in a sphere of volume V s ( m )
and
Let V s ( m + 1 ) be the volume of the largest sphere inscribed in the n -gonal pyramid of volume V p ( m ) which is tangent to the faces of the n -gonal pyramid.
Let V s = ∑ m = 1 ∞ V s ( m ) and V p = ∑ m = 1 ∞ V p ( m ) and
let ϕ ( n ) = 2 1 + 1 + 2 sec 2 ( n π ) .
If V s ( 1 ) 2 V s ∗ V p = b b π a a n sin ( n 2 π ) ( ( b ϕ ( n ) ) b − a b ( b ϕ ( n ) ) b ) a , where a and b are coprime positive integers, find a + b .
Note: ϕ ( 4 ) is the golden ratio. Refer to previous problem
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
V s ( 1 ) = 3 4 π R 1 3 .
x = 2 r 1 sin ( n π ) and h = r 1 cos ( n π ) ⟹ A △ A B C = 2 n sin ( n 2 π ) r 1 2 ⟹ V 1 ( p ) = 6 n sin ( n 2 π ) r 1 2 H 1
R 1 2 = ( H 1 − R 1 ) 2 + r 1 2 ⟹ r 1 2 = 2 H 1 R 1 − H 1 2 ⟹ V 1 = 6 n sin ( n 2 π ) ( 2 H 1 2 R 1 − H 1 3 ) ⟹ d H 1 d V 1 ( p ) = 6 n sin ( n 2 π ) H 1 ( 4 R 1 − 3 H 1 ) = 0 ⟹ H 1 = 3 4 R 1 ⟹ r 1 = 3 2 2 R 1
s = h 2 + H 1 2 = 3 2 2 cos 2 ( n π ) + 2 R 1
The area of the above triangle is A = h H 1 = ( h + s ) R 2 ⟹ R 2 = h + s h H 1
h H 1 = 9 8 2 cos ( n π ) R 1 2 and h + s = 3 2 2 ( cos ( n π ) + cos 2 ( n π ) + 2 ) R 1 ⟹ R 2 = 3 ( cos ( n π ) + cos 2 ( n π ) + 2 ) 4 cos ( n π ) R 1
Let a n = cos ( n π ) + cos 2 ( n π ) + 2 cos ( n π ) = 1 + 1 + 2 sec 2 ( n π ) 1
Now let ϕ ( n ) = 2 1 + 1 + 2 sec 2 ( n π ) ⟹ j ( n ) = 3 4 a n = 3 ϕ ( n ) 2 ⟹ R 2 = j ( n ) R 1 = 3 ϕ ( n ) 2 R 1
and ⟹ r 2 = 3 2 2 R 2 = 3 2 2 ( 3 ϕ ( n ) 2 ) R 1 , H 2 = 3 4 R 2 = 3 4 ( 3 ϕ ( n ) 2 ) R 1 , R 3 = 3 ϕ ( n ) 2 R 2 = ( 3 ϕ ( n ) 2 ) 2 R 1 , r 3 = 3 2 2 R 3 = 3 2 2 ( 3 ϕ ( n ) 2 ) 2 R 1 , H 3 = 3 4 R 3 = 3 4 ( 3 ϕ ( n ) 2 ) 2 R 1
In General:
R m = ( 3 ϕ ( n ) 2 ) m − 1 R 1
r m = 3 2 2 ( 3 ϕ ( n ) 2 ) m − 1 R 1
h m = 3 4 ( 3 ϕ ( n ) 2 ) m − 1 R 1
⟹ V s ( m ) = ( 2 7 ϕ ( n ) 8 ) m − 1 V s ( 1 ) and V p ( m ) = 2 7 π 4 n sin ( n 2 π ) ( 2 7 ϕ ( n ) 8 ) m − 1 V s ( 1 )
⟹
V s = V s ( 1 ) ∑ m = 1 ∞ ( 2 7 ϕ ( n ) 8 ) m − 1 = 2 7 ϕ 3 ( n ) − 8 2 7 ϕ 3 ( n ) V s ( 1 )
and
V p = 2 7 π 4 n sin ( n 2 π ) ( 2 7 ϕ 3 ( n ) − 8 2 7 ϕ 3 ( n ) ) V s ( 1 )
⟹ V s ( 1 ) 2 V s ∗ V p = 2 7 π 4 n sin ( n 2 π ) ( 2 7 ϕ 3 ( n ) − 8 2 7 ϕ 3 ( n ) ) 2 = 3 3 π 2 2 n sin ( n 2 π ) ( ( 3 ϕ ( n ) ) 3 − 2 3 ( 3 ϕ ( n ) ) 3 ) 2 = b b π a a n sin ( n 2 π ) ( ( b ϕ ( n ) ) b − a b ( b ϕ ( n ) ) b ) a ⟹ a + b = 5
Note: For nested cones and spheres we have: α = lim n → ∞ ϕ ( n ) = 2 1 + 3 and lim n → ∞ n sin ( n 2 π ) = 2 π .
Letting P ( n ) = V s ( 1 ) 2 V s ( n ) ∗ V p ( n ) ⟹ lim n → ∞ P ( n ) = 2 7 8 ( 2 7 α 3 − 8 2 7 α 3 ) 2 .
My problem for Nested square pyramids and spheres
My problem for Nested Tetrahedrons and spheres