Nested roots

Algebra Level 3

x 2 x 3 x 4 x 5 x = x 5 x 4 x 3 x 2 x \Large \sqrt[5x]{\sqrt[4x]{\sqrt[3x]{\sqrt[2x]{x}}}} = \sqrt[x]{\sqrt[x^2]{\sqrt[x^3]{\sqrt[x^4]{x^5}}}}

Find the real value of x x satisfying the real equation above.

The answer is of the form a 6 \sqrt[6]{a} , then submot the value of a a .

Note:- x 1 x \neq 1


This is one part of the set Fun with exponents


The answer is 600.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Menon
Apr 25, 2016

x 2 x 3 x 4 x 5 x = x 5 x 4 x 3 x 2 x ( ( ( x 1 2 x ) 1 3 x ) 1 4 x ) 1 5 x = ( ( ( x 5 1 x 4 ) 1 x 3 ) 1 x 2 ) 1 x x 1 120 x 4 = x 5 x 10 Equating the powers : 1 120 x 4 = 5 x 10 x 6 = 120 × 5 x 6 = 600 x = 600 6 a = 600 \begin{aligned} \sqrt[5x]{\sqrt[4x]{\sqrt[3x]{\sqrt[2x]{x}}}} & = \sqrt[x]{\sqrt[x^2]{\sqrt[x^3]{\sqrt[x^4]{x^5}}}}\\ {\left({\left({\left(x^{\tfrac{1}{2x}}\right)}^{\frac{1}{3x}}\right)}^{\frac{1}{4x}}\right)}^{\frac{1}{5x}} & = {\left({\left({\left({x^5}^{\tfrac{1}{x^4}}\right)}^{\frac{1}{x^3}}\right)}^{\frac{1}{x^2}}\right)}^{\frac{1}{x}}\\ x^{\tfrac{1}{120x^4}} & = x^{\tfrac{5}{x^{10}}}\\ \text{Equating the powers}:-\\ \dfrac{1}{120x^4} & = \dfrac{5}{x^{10}}\\ x^6 & = 120 × 5\\ x^6 & = 600\\ x & = \sqrt[6]{600}\\ \therefore a = \boxed{600} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...