Nested roots

Algebra Level 3

1 2011 + 201 1 2 1 = m n \frac{1}{\sqrt{2011+\sqrt{2011^2-1}}}=\sqrt{m}-\sqrt{n} where m m and n n are positive integers, what is value of m + n m+n ?


The answer is 2011.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mahdi Al-kawaz
Apr 14, 2014

1 2011 + 201 1 2 1 = 1 1006 + 2 1006 × 1005 + 1005 \frac{1}{\sqrt{2011+\sqrt{2011^{2}-1}}}=\frac{1}{\sqrt{1006+2\sqrt{1006 \times 1005}+1005}}

= 1 ( 1006 + 1005 ) 2 \frac{1}{\sqrt{(\sqrt{1006}+\sqrt{1005})^2}}

= 1 1006 + 1005 = 1006 1005 1006 1005 \frac{1}{\sqrt{1006}+\sqrt{1005}}=\frac{\sqrt{1006}-\sqrt{1005}}{1006-1005}

= 1006 1005 \sqrt{1006}-\sqrt{1005}

how did u think it , huh ??

Rishabh Jain - 7 years ago
Dan Lawson
Apr 16, 2014

Let x = a + a 2 1 x=\sqrt{a+\sqrt{a^2-1}} and y = a a 2 1 y=\sqrt{a-\sqrt{a^2-1}} . Then

x y = a + a 2 1 a a 2 1 = a 2 ( a 2 1 ) = 1 \begin{aligned} xy &= \sqrt{a+\sqrt{a^2-1}} \sqrt{a-\sqrt{a^2-1}}\\ &= \sqrt{a^2-(a^2-1)}\\ &= 1 \end{aligned} We want to express x 1 = y x^{-1}=y as m n \sqrt{m}-\sqrt{n} for integers m m and n n . Note that ( x + y ) 2 = x 2 + 2 x y + y 2 = a + a 2 1 + 2 + a a 2 1 = 2 a + 2 \begin{aligned} (x+y)^2 &= x^2+2xy+y^2\\ &= a+\sqrt{a^2-1} +2 + a-\sqrt{a^2-1} \\ &= 2a+2 \end{aligned} Thus x + y = 2 a + 2 x+y=\sqrt{2a+2} . Similarly x y = 2 a 2 x-y=\sqrt{2a-2} . So

y = 1 2 ( 2 a + 2 2 a 2 ) = 2 a + 2 4 2 a 2 4 = a + 1 2 a 1 2 = m n \begin{aligned} y &= \frac{1}{2} (\sqrt{2a+2}-\sqrt{2a-2})\\ &= \sqrt{\frac{2a+2}{4}}-\sqrt{\frac{2a-2}{4}} \\ &= \sqrt{\frac{a+1}{2}}-\sqrt{\frac{a-1}{2}}\\ &= \sqrt{m}-\sqrt{n} \end{aligned} The sum m + n = a m+n=a . Therefore when a = 2011 a=2011 , the solution is 2011 \boxed{2011} .

Patrick Corn
Apr 15, 2014

Let m = x + 1 2 , n = x 1 2 . m = \frac{x+1}2, n = \frac{x-1}2. Then x x 2 1 = m + n 2 m n , x-\sqrt{x^2-1} = m+n-2\sqrt{mn}, so 1 x + x 2 1 = m + n 2 m n \frac1{x+\sqrt{x^2-1}} = m+n-2\sqrt{mn} , and taking the square root of both sides gives us the desired result. In this case, x = 2011 , m = 1006 , n = 1005 , m + n = x = 2011 x = 2011, m = 1006, n = 1005, m+n = x = \fbox{2011} .

This demonstrates that the solution works; I got it by looking at the first equation and setting m + n = x m+n = x and 4 m n = x 2 1 4mn = x^2-1 , and solving for m m and n n .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...