Nested sine integral!!!!

Calculus Level 3

Let

0 π sin 10 ( x + sin ( 7 x ) ) d x = R A π L \displaystyle \int_0^{\pi} \sin^{10}(x+\sin(7x))dx=\frac {R}{A}\pi^L Is true for positive integers R , L , A R,L,A where gcd ( R , A ) = 1 \gcd {(R,A)}=1 . Find

R + L + A R+L+A


The answer is 320.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 15, 2019

If we define I n = 0 2 π cos ( n ( x + sin 7 x ) ) d x n N { 0 } I_n = \int_0^{2\pi} \cos\big(n(x + \sin7x)\big)\,dx \hspace{2cm} n \in \mathbb{N} \cup \{0\} then I n = R e [ 0 2 π e i n ( x + sin 7 x ) d x ] = R e [ z = 1 z n e 1 2 n ( z 7 z 7 ) d z i z ] = R e [ 2 π R e s z = 0 z n 1 e 1 2 n ( z 7 z 7 ) ] I_n \; = \; \mathfrak{Re}\left[\int_0^{2\pi} e^{in(x + \sin7x)}\,dx\right] \; = \; \mathfrak{Re}\left[\int_{|z|=1} z^n e^{\frac12n(z^7-z^{-7})}\,\frac{dz}{iz}\right] \; = \; \mathfrak{Re}\left[2\pi\mathrm{Res}_{z=0}z^{n-1}e^{\frac12n(z^7-z^{-7})}\right] from which it is clear that I n = 0 I_n = 0 whenever n n is not a multiple of 7 7 . Of course I 0 = 2 π I_0 = 2\pi . Since 512 sin 10 u = cos 10 u + 10 cos 8 u 45 cos 6 u + 120 cos 4 u 210 cos 2 u + 126 512\sin^{10}u \; = \; -\cos10u + 10\cos8u - 45\cos6u + 120\cos4u - 210\cos2u + 126 we deduce that 0 π sin 10 ( x + sin 7 x ) d x = 1 2 0 2 π sin 10 ( x + sin 7 x ) d x = 1 1024 [ I 10 + 10 I 8 45 I 6 + 120 I 4 210 I 2 + 126 I 0 ] = 63 512 I 0 = 63 256 π \begin{aligned} \int_0^\pi \sin^{10}(x + \sin7x)\,dx & = \; \tfrac12\int_0^{2\pi}\sin^{10}(x + \sin7x)\,dx \; = \; \tfrac{1}{1024}\big[-I_{10} + 10I_8 - 45I_6 + 120I_4 - 210I_2 + 126I_0\big] \\ & = \; \tfrac{63}{512}I_0 \; = \; \tfrac{63}{256}\pi \end{aligned} making the answer 63 + 1 + 256 = 320 63 + 1 + 256 = \boxed{320} .

Same way.......

Rohan Shinde - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...