Nested Spheres and Bipyramids.

Level pending

Let n > = 4 n >= 4 be a fixed positive integer and consider a bipyramid whose connected base is a regular n n - gon.

For each positive integer m m ,

Let V p ( m ) V_{p}(m) be the volume of the largest bipyramid that can be inscribed in a sphere of volume V s ( m ) V_{s}(m)

Let V s ( m + 1 ) V_{s}(m + 1) be the volume of the largest sphere that be inscribed in the bipyramid of volume V p ( m ) V_{p}(m) .

Let V s ( n ) = m = 1 V s ( m ) V^{*}_{s}(n) = \sum_{m = 1}^{\infty} V_{s}(m) and V p ( n ) = m = 1 V p ( m ) V^{*}_{p}(n) = \sum_{m = 1}^{\infty} V_{p}(m) and a a and b b be coprime positive integers.

If lim n V s ( n ) V p ( n ) = a 3 b 3 a 2 a V s ( 1 ) 2 \lim_{n \rightarrow \infty} V^{*}_{s}(n) * V^{*}_{p}(n) = \dfrac{a^3 }{b^3 - a^2\sqrt{a}} V_{s}(1)^2 ,
find a + b a + b

Note: My intention is not to reduce the problem to nested spheres and right circular bicones, but you will get the correct result if you do so., since lim n V p ( n ) = V b i c o n e \lim_{n \rightarrow \infty} V_{p}(n) = V_{bicone} , where V p ( n ) V_{p}(n) is the volume of a bipyramid whose connected base is a regular n n- -gon.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 11, 2017

For area of n n - gon ):

Let B C = x BC = x be a side of the n n - gon, A C = A B = r AC = AB= r^{*} , A D = h AD = h^* , and B A D = π n \angle{BAD} = \dfrac{\pi}{n} .

x = 2 r sin ( π n ) x = 2 r^{*} \sin(\dfrac{\pi}{n}) and h = r cos ( π n ) h^{*} = r^{*} \cos(\dfrac{\pi}{n}) \implies

A n g o n = n 2 sin ( 2 π n ) r 2 V p ( 1 ) ( n ) = n 3 sin ( 2 π n ) r 2 H A_{n-gon} = \dfrac{n}{2} \sin(\dfrac{2\pi}{n}) {r^{*}}^2 \implies V_{p(1)}(n) = \dfrac{n}{3} \sin(\dfrac{2\pi}{n}) {r^{*}}^2 H and the volume of the initial sphere V s ( 1 ) = 4 π 3 R 3 V_{s}(1) = \dfrac{4\pi}{3} R^3

For the bipyramid inscribed in the sphere r = R , H = 2 R r^* = R, \:\ H = 2R \implies V p ( 1 ) ( n ) = n 2 π sin ( 2 π n ) V s ( 1 ) V_{p(1)}(n) = \dfrac{n}{2\pi} \sin(\dfrac{2\pi}{n}) V_{s(1)} .

To find the inscribed sphere: Cut the bipyramid and inscribed sphere with a vertical plane passing through the center of the sphere and perpendicular to the connected base, the cross-section becomes a circle inscribed in a rhombus.

Let r r be the radius of the inscribed circle.

In A B C , D E A B , D F A C \triangle{ABC}, \:\ DE \perp AB, \:\ DF \perp AC .

The diagonal of the rhombus B C = 2 h = 2 r cos ( π n ) , D E = D F = r , A B = A C = H 2 + 4 r 2 cos ( π n ) 2 = s , BC = 2h^{*} = 2 r^{*} \cos(\dfrac{\pi}{n}), \:\ DE = DF = r, \:\ AB = AC = \dfrac{\sqrt{H^2 + 4 {r^{*}}^2 \cos(\dfrac{\pi}{n})}}{2} = s, and A D = H 2 . AD = \dfrac{H}{2}.

A A B C = h H s r = h H 2 s = r cos ( π n ) 1 + cos 2 ( π n ) A_{\triangle{ABC}}= \dfrac{h^{*} H}{s} \implies r = \dfrac{h^{*} H}{2 s} = \dfrac{r^{*} \cos(\dfrac{\pi}{n})}{\sqrt{1 + \cos^2(\dfrac{\pi}{n})}}

Using r = R , h = 2 R r^{*} = R, \:\ h^{*} = 2R from above r = R cos ( π n ) 1 + cos ( π n ) = R sec 2 ( π n ) + 1 \implies r = \dfrac{R \cos(\dfrac{\pi}{n})}{\sqrt{1 + \cos(\dfrac{\pi}{n})}} = \dfrac{R}{\sqrt{\sec^2(\dfrac{\pi}{n}) + 1}}

Let r ( 1 ) = r = R , H ( 1 ) = H = 2 R , r ( 1 ) = r = R sec 2 ( π n ) + 1 r^{*}(1) = r^{*} = R, \:\, H(1) = H = 2R, \:\ r(1) = r = \dfrac{R}{\sqrt{\sec^2(\dfrac{\pi}{n}) + 1}} \implies

r ( m ) = ( 1 sec 2 ( π n ) + 1 ) m 1 R = r ( m ) r(m) = (\dfrac{1}{\sqrt{\sec^2(\dfrac{\pi}{n}) + 1}})^{m - 1} * R = r^{*}(m) and H ( m ) = 2 ( 1 sec 2 ( π n ) + 1 ) m 1 R H(m) = 2 (\dfrac{1}{\sqrt{\sec^2(\dfrac{\pi}{n}) + 1}})^{m - 1} * R , for each positive integer m m .

Let w n = sec 2 ( π n ) + 1 w_{n} = \sqrt{\sec^2(\dfrac{\pi}{n}) + 1} \implies

V s ( m ) = ( 1 w n 3 ) m 1 V s ( 1 ) V_{s}(m) = (\dfrac{1}{{w_{n}}^3})^{m - 1} V_{s}(1) and V p ( m ) = n 2 π sin ( 2 π n ) ( 1 w n 3 ) m 1 V s ( 1 ) V_{p}(m) = \dfrac{n}{2\pi} \sin(\dfrac{2\pi}{n}) (\dfrac{1}{{w_{n}}^3})^{m - 1} V_{s}(1) \implies

V s ( n ) = m = 1 V s ( m ) V^{*}_{s}(n) = \sum_{m = 1}^{\infty} V_{s}(m) = w n 3 w n 3 1 V s ( 1 ) = \dfrac{{w_{n}}^3}{{w_{n}}^3 - 1} V_{s}(1) and V p ( n ) = m = 1 V p ( m ) V^{*}_{p}(n) = \sum_{m = 1}^{\infty} V_{p}(m) = n 2 π sin ( 2 π n ) ( w n 3 w n 3 1 ) V s ( 1 ) = \dfrac{n}{2\pi} \sin(\dfrac{2\pi}{n}) (\dfrac{{w_{n}}^3}{{w_{n}}^3 - 1}) V_{s}(1)

Let j ( n ) = n 2 π sin ( 2 π n ) . j(n) = \dfrac{n}{2\pi} \sin(\dfrac{2\pi}{n}).

The inequality cos ( x ) < sin ( x ) x < 1 cos ( 2 π n ) < j n < 1 lim n j ( n ) = 1 \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies \cos(\dfrac{2\pi}{n}) < j_{n} < 1 \implies \lim_{n \rightarrow \infty} j(n) = 1 \implies

lim n V p ( n ) = lim n V s ( n ) = ( 2 ) 3 ( 2 ) 3 1 V s ( 1 ) \lim_{n \rightarrow \infty} V^{*}_{p}(n) = \lim_{n \rightarrow \infty} V^{*}_{s}(n) = \dfrac{(\sqrt{2})^3}{(\sqrt{2})^3 - 1} V_{s}(1) \implies

lim n V s ( n ) V p ( n ) \lim_{n \rightarrow \infty} V^{*}_{s}(n) * V^{*}_{p}(n) = 8 ( 2 2 1 ) 2 ( V s ( 1 ) ) 2 = \dfrac{8}{(2\sqrt{2} - 1)^2} (V_{s}(1))^2 = 8 9 4 2 V s ( 1 ) 2 = = \dfrac{8}{9 - 4\sqrt{2}} V_{s}(1)^2 = a 3 V s ( 1 ) 2 b 3 a 2 a a + b = 5 . \dfrac{a^3 V_{s}(1)^2}{b^3 - a^2\sqrt{a}} \implies a + b = \boxed{5}.

Using right circular bicones:

From above the volume of the bipyramid is V p ( n ) = n 3 sin ( 2 π n ) r 2 H V_{p}(n) = \dfrac{n}{3} \sin(\dfrac{2\pi}{n}) {r^{*}}^2 H

Using the inequality cos ( x ) < sin ( x ) x < 1 cos ( 2 π n ) < n 2 π sin ( 2 π n ) < 1 2 π 3 cos ( 2 π n ) < n 3 sin ( 2 π n ) < 2 π 3 \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies \cos(\dfrac{2\pi}{n}) < \dfrac{n}{2\pi} * \sin(\dfrac{2\pi}{n}) < 1 \implies \dfrac{2\pi}{3} * \cos(\dfrac{2\pi}{n}) < \dfrac{n}{3} \sin(\dfrac{2\pi}{n}) < \dfrac{2\pi}{3}

lim n V p ( n ) = 2 π 3 r 2 H = V b i c o n e \implies \lim_{n \rightarrow \infty} V_{p}(n) = \boxed{\dfrac{2\pi}{3} {r^{*}}^2 H = V_{bicone}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...