Let be a fixed positive integer and consider an -gonal prism whose bases are regular gons and faces are congruent rectangles.
For each positive integer ,
Let be the volume of the largest -gonal prism that can be inscribed in a sphere of volume
Let be the volume of the largest sphere that be inscribed in the -gonal prism of volume .
Let and and let the volume of the initial sphere .
Find: , and express the result to five decimal places.
Note: My intention is not to reduce the problem to nested spheres and right circular cylinders, but you will get the correct result if you do so., since , where is the volume of a -gonal prism.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For area of n − g o n :
Let B C = x be a side of the n − g o n , A C = A B = r ∗ , A D = h ∗ , and ∠ B A D = n π .
2 x = r ∗ sin ( n π ) ⟹ r ∗ = 2 sin ( n π ) x ⟹ h ∗ = r ∗ cos ( n π ) ⟹
A n − g o n = 2 n sin ( n 2 π ) r ∗ 2 ⟹ The volume of the n -gonal prism is V c = 2 n sin ( n 2 π ) r ∗ 2 H
Let H be the height of the given n − g o n a l prism.
In the right triangle above: A C = 2 H , B C = r ∗ , A B = R ⟹
r ∗ 2 = 4 4 R 2 − H 2 ⟹ V p ( H ) = 8 n sin ( n 2 π ) ( 4 R 2 H − H 3 ) ⟹ d H d V c = 8 n sin ( n 2 π ) ( 4 R 2 − 3 H 2 ) = 0 ⟹ H = 3 2 R ⟹
r ∗ 2 = 3 2 R 2 ⟹ r ∗ = 3 2 R ⟹ V c ( 1 ) = 2 3 π n sin ( n 2 π ) V s ( 1 )
For the inscribed sphere:
The radius of the inscribed sphere r = h ∗ = r ∗ cos ( n π ) = 3 2 cos ( n π ) R ⟹ V s ( 2 ) = 3 2 3 2 cos 3 ( n π ) V s ( 1 )
Let r 1 = R , r 2 = r = r ∗ cos ( n π ) = 3 2 cos ( n π ) R , r 1 ∗ = 3 2 R , H 1 = 3 2 R ⟹
r 2 ∗ = 3 2 r 2 = 3 2 ( 3 2 cos ( n π ) ) R
H 2 = 3 2 ( 3 2 cos ( n π ) ) R
r 3 = ( 3 2 cos ( n π ) ) 2 R
r 3 ∗ = 3 2 ( 3 2 cos ( n π ) ) ) 2 R
H 3 = 3 2 ( 3 2 cos ( n π ) ) 2 R
In General:
r ( m ) = ( 3 2 cos ( n π ) ) m − 1 R
r ∗ ( m ) = 3 2 ( 3 2 cos ( n π ) ) m − 1 R
H ( m ) = 3 2 ( 3 2 cos ( n π ) ) m − 1 R
⟹ V c ( m ) = 2 3 π n sin ( n 2 π ) ( 3 2 cos ( n π ) ) 3 ( m − 1 ) ∗ V s ( 1 ) and V s ( m ) = ( 3 2 cos ( n π ) ) 3 ( m − 1 ) ∗ V s ( 1 ) ⟹
V c ∗ ( n ) = ∑ m = 1 ∞ V c ( m ) = 2 3 π n sin ( n 2 π ) ( 1 − ( 3 2 cos ( n π ) ) 3 1 ) and V s ∗ ( n ) = ( 1 − ( 3 2 cos ( n π ) ) 3 1 )
Let j ( n ) = 2 3 π n sin ( n 2 π )
Using the inequality: cos ( x ) < x sin ( x ) < 1 ⟹
cos ( n 2 π ) < 2 π n sin ( n 2 π ) < 1 ⟹ 3 1 cos ( n 2 π ) < j ( n ) < 3 1 ⟹ lim n → ∞ j ( n ) = 3 1
⟹ lim n → ∞ V c ∗ ( n ) = 3 3 − 2 2 3 ∗ V s ( 1 ) and lim n → ∞ V s ∗ ( n ) = 3 3 − 2 2 3 3 ∗ V s ( 1 ) ⟹
lim n → ∞ V c ∗ ( n ) ∗ V s ∗ ( n ) = ( 3 3 − 2 2 ) 2 9 3 ∗ V s ( 1 ) 2
Letting V s ( 1 ) = 1 ⟹ lim n → ∞ V c ∗ ( n ) ∗ V s ∗ ( n ) = ( 3 3 − 2 2 ) 2 9 3 = 2 . 7 8 0 6 1
Using right circular cones:
From above the volume of the n -gonal prism is V c ( n ) = 2 n sin ( n 2 π ) r ∗ 2 H
Using the inequality cos ( x ) < x sin ( x ) < 1 ⟹ cos ( n 2 π ) < 2 π n ∗ sin ( n 2 π ) < 1 ⟹ π ∗ cos ( n 2 π ) < 2 n sin ( n 2 π ) < π
⟹ lim n → ∞ V c ( n ) = π r ∗ 2 H = V c y l i n d e r