Nested Spheres and Pyramids

Level pending

Let n n be a fixed positive integer and consider a pyramid whose base is a regular 4 n 4n - gon.

For each positive integer m m ,

Let V p ( m ) V_{p}(m) be the volume of the largest pyramid above that can be inscribed in a sphere of volume V s ( m ) V_{s}(m)

Let V s ( m + 1 ) V_{s}(m + 1) be the volume of the largest sphere that be inscribed in the pyramid of volume V p ( m ) V_{p}(m) .

Let V s ( n ) = m = 1 V s ( m ) V^{*}_{s}(n) = \sum_{m = 1}^{\infty} V_{s}(m) and V p ( n ) = m = 1 V p ( m ) V^{*}_{p}(n) = \sum_{m = 1}^{\infty} V_{p}(m) and let the volume of the initial sphere V s ( 1 ) = 1 V_{s}(1) = 1 .

Find: lim n V s ( n ) V p ( n ) \lim_{n \rightarrow \infty} V^{*}_{s}(n) * V^{*}_{p}(n) , and express the result to seven decimal places.

Note: My intention is not to reduce the problem to nested spheres and right circular cones, but you will get the correct result if you do so., since lim n V p ( n ) = V c o n e \lim_{n \rightarrow \infty} V_{p}(n) = V_{cone} , where V p ( n ) V_{p}(n) is the volume of a pyramid whose base is a regular n g o n n-gon .


The answer is 0.3793639.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 9, 2017

For area of 4 n g o n 4n - gon :

Let B C = x BC = x be a side of the 4 n g o n 4n - gon , A C = A B = r AC = AB= r^{*} , A D = h AD = h^* , and B A D = 45 n \angle{BAD} = \dfrac{45}{n} .

x 2 = r sin ( 45 n ) r = x 2 sin ( 45 n ) h = x 2 cot ( 45 n ) \dfrac{x}{2} = r^{*} \sin(\dfrac{45}{n}) \implies r^{*} = \dfrac{x}{2 \sin(\dfrac{45}{n})} \implies h^{*} = \dfrac{x}{2} \cot(\dfrac{45}{n}) \implies

A n g o n = n cot ( 45 n ) x 2 V p = n 3 cot ( 45 n ) x 2 H A_{n - gon} = n \cot(\dfrac{45}{n}) x^2 \implies V_{p} = \dfrac{n}{3} \cot(\dfrac{45}{n}) x^2 H

The volume of the sphere V s = 4 3 π R 3 V_{s} = \dfrac{4}{3} \pi R^3

Let H H be the height of the given pyramid.

In the right triangle above: A C = H R , B C = x 2 sin ( 45 n ) , A B = R AC = H - R, BC = \dfrac{x}{2 \sin(\dfrac{45}{n})}, AB = R \implies

R 2 = ( H R ) 2 + x 2 4 csc 2 ( 45 n ) x 2 = 4 sin 2 ( 45 n ) ( 2 R H H 3 ) R^2 = (H - R)^2 + \dfrac{x^2}{4} \csc^2(\dfrac{45}{n}) \implies x^2 = 4 \sin^2(\dfrac{45}{n}) (2RH - H^3)

V p ( H ) = 4 n 3 sin 2 ( 45 n ) ( 2 R H 2 H 3 ) \implies V_{p}(H) = \dfrac{4n}{3} \sin^2(\dfrac{45}{n}) (2RH^2 - H^3) \implies

d V p d H = 4 n 3 sin 2 ( 45 n ) ( H ) ( 4 R 3 H ) = 0 \dfrac{dV_{p}}{dH} = \dfrac{4n}{3} \sin^2(\dfrac{45}{n}) (H) (4R - 3H) = 0 , H 0 H = 4 R 3 x 2 = 32 9 sin 2 ( 45 n ) R 2 x = 4 2 sin ( 45 n ) R 3 H \neq 0 \implies H = \dfrac{4R}{3} \implies x^2 = \dfrac{32}{9} \sin^2(\dfrac{45}{n}) R^2 \implies x = \dfrac{4 \sqrt{2} \sin(\dfrac{45}{n}) R} {3}

H = 4 R 3 H = \dfrac{4R}{3} maximizes V p ( H ) V_{p}(H) since d 2 V p d H 2 ( H = 4 R 3 ) < 0 \dfrac{d^2V_{p}}{dH^2}|_{(H = \dfrac{4R}{3})} < 0

To find the inscribed sphere: Cut the pyramid and inscribed sphere with a vertical plane passing through the center of the sphere and perpendicular to the base of the pyramid, the cross-section becomes a circle inscribed in an isosceles triangle:

Using the above isosceles triangle we have:

A C = B C AC = BC is the slant height s = x 2 cot 2 ( 45 n ) + 4 h 2 2 s = \dfrac{\sqrt{x^2 \cot^2(\dfrac{45}{n}) + 4h^2}}{2} of our square pyramid and A B = 2 h = x cot ( 45 n ) AB = 2 h^{*} = x \cot(\dfrac{45}{n}) , where from above h = x 2 cot ( 45 n ) . h^{*} = \dfrac{x}{2} \cot(\dfrac{45}{n}).

As an analogy using the regular dodecagon( n = 3 n = 3 ) above, 2 h 2 h^{*} is the line segment from 10 10 to 4 4 .

From the isosceles triangle diagram above the Area of the isosceles triangle A = r ( 2 s + x cot ( 45 n ) ) 2 A = \dfrac{r(2s + x \cot(\dfrac{45}{n}))}{2}

r = 2 A 2 s + x cot ( 45 n ) r = x cot ( 45 n ) H x 2 cot 2 ( 45 n ) + 4 H 2 + x cot ( 45 n ) \implies r = \dfrac{2A}{2s + x \cot(\dfrac{45}{n})} \implies r = \dfrac{x \cot(\dfrac{45}{n}) H}{\sqrt{x^2 \cot^2(\dfrac{45}{n}) + 4 H^2} + x \cot(\dfrac{45}{n})}

Using H = 4 R 3 H = \dfrac{4R}{3} and x = 4 2 sin ( 45 n ) R 3 x = \dfrac{4 \sqrt{2} \sin(\dfrac{45}{n}) R} {3} and after simplifying we obtain:

r = ( 4 3 R 1 + 2 sec 2 ( 45 n ) + 1 ) r = (\dfrac{\dfrac{4}{3} R}{\sqrt{1 + 2 \sec^2(\dfrac{45}{n})} + 1})

Converting to radians we have: r = ( 4 3 R 1 + 2 sec 2 ( π 4 n ) + 1 ) r = (\dfrac{\dfrac{4}{3} R}{\sqrt{1 + 2 \sec^2(\dfrac{\pi}{4n}) } + 1})

Now let α n = 1 1 + 2 sec 2 ( π 4 n ) + 1 \alpha_{n} = \dfrac{1}{\sqrt{1 + 2 \sec^2(\dfrac{\pi}{4n}) } + 1} and w n = sin ( π 4 n ) w_{n} = \sin(\dfrac{\pi}{4n}) .

Let r 1 = R , r 2 = r = 4 3 α n R , x 1 = x = 4 2 3 w n R , H 1 = H = 4 R 3 r1 = R, r_{2} = r = \dfrac{4}{3} \alpha_{n} R , x_{1} = x = \dfrac{4\sqrt{2}}{3} w_{n} R, H_{1} = H = \dfrac{4R}{3} \implies

x 2 = 4 2 3 w n r 2 = 4 2 3 w n ( 4 3 α n ) R x_{2} = \dfrac{4\sqrt{2}}{3} w_{n} r_{2} = \dfrac{4\sqrt{2}}{3} w_{n} (\dfrac{4}{3} \alpha_{n}) R and H 2 = 4 3 r 2 = 4 3 ( 4 3 α n ) R H_{2} = \dfrac{4}{3} r^2 = \dfrac{4}{3} (\dfrac{4}{3} \alpha_{n}) R

r 3 = 4 3 α n r 2 = ( 4 3 α n ) 2 R r_{3} = \dfrac{4}{3} \alpha_{n} r_{2} = (\dfrac{4}{3} \alpha_{n})^2 R \implies

x 3 = 4 2 3 w n ( 4 3 α n ) 2 R x_{3} = \dfrac{4\sqrt{2}}{3} w_{n} (\dfrac{4}{3} \alpha_{n})^2 R

H 3 = 4 3 ( 4 3 α n ) 2 R H_{3} = \dfrac{4}{3} (\dfrac{4}{3} \alpha_{n})^2 R

In General:

r m = ( 4 3 α n ) m 1 R , x m = 4 2 3 w n ( 4 3 α n ) m 1 R , h m = 4 3 ( 4 3 α n ) m 1 R r_{m} = (\dfrac{4}{3} \alpha_{n})^{m - 1} R , x_{m} = \dfrac{4 \sqrt{2}}{3} w_{n} (\dfrac{4}{3} \alpha_{n})^{m - 1} R , h_{m} = \dfrac{4}{3} (\dfrac{4}{3} \alpha_{n})^{m - 1} R

V p ( m ) = 32 n 27 π cot ( π 4 n ) w n 2 ( 64 27 α n 3 ) m 1 V s ( 1 ) \implies V_{p}(m) = \dfrac{32 n}{27\pi} \cot(\dfrac{\pi}{4n}) w_{n}^2 (\dfrac{64}{27} \alpha_{n}^3)^{m - 1} V_{s}(1) and V s ( m ) = ( 64 27 α n 3 ) m 1 V s ( 1 ) V_{s}(m) = (\dfrac{64}{27} \alpha_{n}^3)^{m - 1} V_{s}(1)

V s ( n ) = m = 1 V s ( m ) = 27 27 64 α n 3 V s ( 1 ) \implies V^{*}_{s}(n) = \sum_{m = 1}^{\infty} V^{*}_{s}(m) = \dfrac{27}{27 - 64 \alpha_{n}^3} V_{s}(1)

and

V p ( n ) = m = 1 V p ( m ) = 32 n 27 π cot ( π 4 n ) w n 2 ( 27 27 64 α n 3 ) V s ( 1 ) V^{*}_{p}(n) = \sum_{m = 1}^{\infty} V_{p}(m) = \dfrac{32 n}{27\pi} \cot(\dfrac{\pi}{4n}) w_{n}^2 (\dfrac{27}{27 - 64 \alpha_{n}^3}) V_{s}(1)

Using w n = sin ( π 4 n ) V p ( n ) = 16 n 27 π sin ( π 2 n ) ( 27 27 64 α n 3 ) V s ( 1 ) w_{n} = \sin(\dfrac{\pi}{4n}) \implies V^{*}_{p}(n) = \dfrac{16 n}{27\pi} \sin(\dfrac{\pi}{2n}) (\dfrac{27}{27 - 64 \alpha_{n}^3}) V_{s}(1)

Let w n = 1 + 2 s e c 2 ( π 4 n ) + 1 α n = 1 w n w^{*}_{n} = \sqrt{1 + 2 sec^2(\dfrac{\pi}{4n}}) + 1 \implies \alpha_{n} = \dfrac{1}{w^{*}_{n}} \implies

V s ( n ) V p ( n ) = 16 n 27 π sin ( π 2 n ) ( 27 ( w n ) 3 27 ( w n ) 3 64 ) 2 ( V s ( 1 ) ) 2 V^{*}_{s}(n) * V^{*}_{p}(n) = \dfrac{16 n}{27\pi} \sin(\dfrac{\pi}{2 n}) (\dfrac{27 (w^{*}_{n})^3}{27 (w^{*}_{n})^3 - 64})^2 (V_{s}(1))^2

Let j ( n ) = 16 n 27 π s i n ( π 2 ) j(n) = \dfrac{16 n}{27\pi} sin(\dfrac{\pi}{2})

To obtain lim n j ( n ) \lim_{n \rightarrow \infty} j(n) :

Using the inequality: cos ( x ) < sin ( x ) x < 1 \cos(x) < \dfrac{\sin(x)}{x} < 1 we obtain:

cos ( π 2 n ) < 2 n π sin ( π 2 n ) < 1 \cos(\dfrac{\pi}{2 n}) < \dfrac{2 n}{\pi} \sin(\dfrac{\pi}{2 n}) < 1 \implies 8 27 cos ( π 2 n ) < j ( n ) < 8 27 lim n j ( n ) = 8 27 . \dfrac{8}{27} \cos(\dfrac{\pi}{2 n}) < j(n) < \dfrac{8}{27} \implies \lim_{n \rightarrow \infty} j(n) = \dfrac{8}{27}.

and

lim n ( 27 ( w n ) 3 27 ( w n ) 3 64 ) 2 = 2 7 2 ( 52 + 30 3 ) ( 103 + 81 3 ) 2 \lim_{n \rightarrow \infty} (\dfrac{27 (w^{*}_{n})^3}{27 (w^{*}_{n})^3 - 64})^2 = \dfrac{27^2 (52 + 30\sqrt{3})}{(103 + 81\sqrt{3})^2}

Letting V s ( 1 ) = 1 V_{s}(1) = 1 and k ( n ) = ( 27 ( w n ) 3 27 ( w n ) 3 64 ) 2 k(n) = (\dfrac{27 (w^{*}_{n})^3}{27 (w^{*}_{n})^3 - 64})^2 \implies

lim n V s ( n ) V p ( n ) = lim n j ( n ) lim n k ( n ) = 216 ( 52 + 30 3 ) ( 103 + 81 3 ) 2 = 0.3793639 \lim_{n \rightarrow \infty} V^{*}_{s}(n) * V^{*}_{p}(n) = \lim_{n \rightarrow \infty} j(n) * \lim_{n \rightarrow \infty} k(n) = \dfrac{216 (52 + 30\sqrt{3})}{(103 + 81\sqrt{3})^2} = \boxed{0.3793639} to seven decimal places.

Using right circular cones:

Note: From above(changing degrees to radians) x 2 = r sin ( π 4 n ) x = 2 r sin ( π 4 n ) \dfrac{x}{2} = r^{*} \sin(\dfrac{\pi}{4n}) \implies x = 2 r^{*} \sin(\dfrac{\pi}{4n})

V p ( n ) = n 3 cot ( π 4 n ) x 2 H = 2 n 3 sin ( π 2 n ) r 2 H \therefore V_{p}(n) =\dfrac{n}{3} \cot(\dfrac{\pi}{4 n}) x^2 H = \dfrac{2 n}{3} \sin(\dfrac{\pi}{2n}) {r^{*}}^2 H .

Let m ( n ) = 2 n 3 sin ( π 2 n ) m(n) = \dfrac{2n}{3} \sin(\dfrac{\pi}{2n}) .

Using the inequality cos ( x ) < sin ( x ) x < 1 cos ( π 2 n ) < 2 n π sin ( π 2 n ) < 1 π 3 cos ( p i 2 n ) < m ( n ) < π 3 \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies \cos(\dfrac{\pi}{2n})< \dfrac{2n}{\pi} * \sin(\dfrac{\pi}{2n}) < 1 \implies \dfrac{\pi}{3} * \cos(\dfrac{pi}{2n})< m(n) < \dfrac{\pi}{3}

lim n V p ( n ) = 1 3 π r 2 H = V c o n e \implies \lim_{n \rightarrow \infty} V_{p}(n) = \boxed{\dfrac{1}{3} \pi {r^{*}}^2 H = V_{cone}} L a T e X LaTeX

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...