Nested Spheres and Regular Tetrahedrons.

Level pending

For each positive integer n n ,

Let V T ( n ) V_{T}(n) be the volume of the regular tetrahedron inscribed in a sphere of volume V s ( n ) V_{s}(n)

and

Let V s ( n + 1 ) V_{s}(n + 1) be the volume of the sphere inscribed in the regular tetrahedron of volume V T ( n ) V_{T}(n) which is tangent to the faces of the regular tetrahedron. .

Let V s = 1 V s ( n ) V_{s} = \sum_{1}^{\infty} V_{s}(n) and V T = 1 V T V_{T} = \sum_{1}^{\infty} V_{T} .

If V s V T = a 4 a b c 2 π ( V s ( 1 ) ) 2 V_{s} * V_{T} = \dfrac{a^4 \sqrt{a}}{bc^2\pi} (V_{s}(1))^2 , where a , b a,b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 1, 2017

The volume of the initial sphere V s ( 1 ) = 4 3 π R 3 V_{s}(1) = \dfrac{4}{3} \pi R^3 .

For the area of the initial tetrahedron we have:

Area of the base of the regular tetrahedron A = 3 4 a 2 A = \dfrac{\sqrt{3}}{4} a^2 .

Let A H = H AH = H , B C = a BC = a and B H = r BH = r^{*} \implies

a 2 = 3 2 r r = a 3 \dfrac{a}{2} = \dfrac{\sqrt{3}}{2} r^{*} \implies r^{*} = \dfrac{a}{\sqrt{3}} \implies the height of the regular tetrahedron H = 2 3 a H = \sqrt{\dfrac{2}{3}} a \implies the volume of the initial regular tetrahedron V T ( 1 ) = a 3 6 2 V_{T}(1) = \dfrac{a^3}{6 \sqrt{2}} .

Finding the volume V T ( 1 ) V_{T}(1) of the initial tetrahedron inscribed in the initial sphere:

In right O B H \triangle{OBH} we have O B = O A = R , O H = 2 3 a R OB = OA = R, OH = \sqrt{\dfrac{2}{3}} a - R , and B H = a 3 R 2 = a 2 3 + ( 2 3 a R ) 2 a ( a 2 2 3 R ) = 0 , a > 0 a = 2 2 3 R V T ( 1 ) = 2 3 3 π V s ( 1 ) BH = \dfrac{a}{\sqrt{3}} \implies R^2 = \dfrac{a^2}{3} + ( \sqrt{\dfrac{2}{3}} a - R)^2 \implies a(a - 2 \sqrt{\dfrac{2}{3}} R) = 0, a > 0 \implies a = 2 \sqrt{\dfrac{2}{3}} R \implies V_{T}(1) = \dfrac{2}{3 \sqrt{3} \pi} V_{s}(1) , which is volume of the initial tetrahedron inscribed in the sphere.

Finding the volume of the inscribed sphere V s ( 2 ) V_{s}(2) :

Erect a perpendicular from point O O to a point P P on a face of the regular tetrahedron, then O P = r = O H , A P = a 3 , OP = r = OH, AP = \dfrac{a}{\sqrt{3}}, and O A = 2 3 a r OA = \sqrt{\dfrac{2}{3}} a - r .

In right A O P \triangle{AOP} we have: R 2 + a 2 3 = ( 2 3 a r ) 2 a ( a 3 2 2 3 r ) = 0 , a > 0 R^2 + \dfrac{a^2}{3} = (\sqrt{\dfrac{2}{3}} a - r)^2 \implies a(\dfrac{a}{3} - 2\sqrt{\dfrac{2}{3}} r) = 0, a> 0 \implies r = a 2 6 r = \dfrac{a}{2\sqrt{6}} and a = 2 2 3 R r = R 3 V s ( 2 ) = 1 27 V s ( 1 ) . a = 2\sqrt{\dfrac{2}{3}} R \implies r = \dfrac{R}{3} \implies V_{s}(2) = \dfrac{1}{27} V_{s}(1).

Let a 1 = a = 2 2 3 R , r 1 = R a_{1} = a = 2\sqrt{\dfrac{2}{3}} R, r_{1} = R and r 2 = r = R 3 r_{2} = r = \dfrac{R}{3}

a 2 = 2 ( 2 3 ) r 2 = 2 ( 2 3 ) ( 1 3 ) R , r 3 = r 2 3 = R 3 2 , a 3 = 2 ( 2 3 ) r 3 = 2 ( 2 3 ) ( 1 3 ) 2 R \implies a_{2} = 2(\sqrt{\dfrac{2}{3}}) r_{2} = 2(\sqrt{\dfrac{2}{3}}) (\dfrac{1}{3}) R, r^3 = \dfrac{r_{2}}{3} = \dfrac{R}{3^2}, a_{3} = 2(\sqrt{\dfrac{2}{3}}) r_{3} = 2(\sqrt{\dfrac{2}{3}}) (\dfrac{1}{3})^2 R

In General:

r n = ( 1 3 ) n 1 R r_{n} = (\dfrac{1}{3})^{n - 1} R and a n = 2 ( 2 3 ) ( 1 3 ) n 1 R V s ( n ) = ( 1 27 ) n 1 V s ( 1 ) a_{n} = 2(\sqrt{\dfrac{2}{3}}) (\dfrac{1}{3})^{n - 1} R \implies V_{s}(n) = (\dfrac{1}{27})^{n - 1} V_{s}(1) and V T ( n ) = 2 3 3 π ( 1 27 ) n 1 V s ( 1 ) V_{T}(n) = \dfrac{2}{3\sqrt{3} \pi} (\dfrac{1}{27})^{n - 1} V_{s}(1) \implies

V s = V s ( 1 ) n = 0 ( 1 27 ) n = 27 26 V s ( 1 ) V_{s} = V_{s}(1) * \sum_{n = 0}^{\infty} (\dfrac{1}{27})^{n} = \dfrac{27}{26} V_{s}(1) and V T = 2 3 3 π V s ( 1 ) n = 0 ( 1 27 ) n = 2 3 3 π ( 27 26 ) V s ( 1 ) V_{T} = \dfrac{2}{3\sqrt{3} \pi} V_{s}(1) * \sum_{n = 0}^{\infty} (\dfrac{1}{27})^{n} = \dfrac{2}{3\sqrt{3} \pi} (\dfrac{27}{26}) V_{s}(1) \implies V s V T = 3 4 3 2 1 3 2 π ( V s ( 1 ) ) 2 = a 4 a b c 2 π ( V s ( 1 ) ) 2 V_{s} * V_{T} = \dfrac{3^4 * \sqrt{3}}{2 * 13^2 \pi} (V_{s}(1))^2 = \dfrac{a^4 \sqrt{a}}{bc^2 \pi} (V_{s}(1))^2 a + b + c = 18 . \implies a + b + c = \boxed{18}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...