Nested Square Pyramids and Spheres!

Geometry Level pending

For each positive integer n n , let:

  • V p ( n ) V_{p}(n) be the volume of the largest square pyramid inscribed in a sphere of volume V s ( n ) V_{s}(n) .
  • V s ( n + 1 ) V_{s}(n + 1) be the volume of the largest sphere inscribed in the square pyramid of volume V p ( n ) V_{p}(n) which is tangent to the faces of the square pyramid.
  • T = n = 1 V s ( n ) T = \sum_{n = 1}^{\infty} V_{s}(n) .

If T V s ( 1 ) = ( a ϕ ) a ( a ϕ ) a b a \dfrac{T}{V_{s}(1)} = \dfrac{(a\phi)^a}{(a\phi)^a - b^a} , where a a and b b are coprime positive integers and ϕ \phi is the golden ratio, find a + b a + b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 21, 2020

V s ( 1 ) = 4 3 π R 1 3 V_{s}(1) = \dfrac{4}{3}\pi R_{1}^3 and V p ( 1 ) = 1 3 x 2 2 H 1 V_{p}(1) = \dfrac{1}{3}x_{2}^2H_{1}

Using the above diagram we have:

( H 1 R 1 ) 2 + x 1 2 2 = R 1 2 x 1 2 = 2 ( 2 H 1 R 1 H 1 2 ) (H_{1} - R_{1})^2 + \dfrac{x_{1}^2}{2} = R_{1}^2 \implies x_{1}^2 = 2(2H_{1}R_{1} - H_{1}^2) \implies V p ( 1 ) = 2 3 ( 2 H 1 2 R 1 H 1 3 ) V_{p}(1) = \dfrac{2}{3}(2H_{1}^2R_{1} - H_{1}^3) \implies

d V p ( 1 ) d H 1 = 2 3 H 1 ( 4 R 1 3 H 1 ) = 0 \dfrac{dV_{p}(1)}{dH_{1}} = \dfrac{2}{3}H_{1}(4R_{1} - 3H_{1}) = 0 and H 1 0 H 1 = 4 3 R 1 x 1 = 4 3 R 1 = H 1 H_{1} \neq 0 \implies H_{1} = \dfrac{4}{3}R_{1} \implies x_{1} = \dfrac{4}{3}R_{1} = H_{1} .

Let S = S 1 S = S_{1} .

S 1 = 1 2 x 1 2 + 4 H 1 2 = 2 3 5 R 1 S_{1} = \dfrac{1}{2}\sqrt{x_{1}^2 + 4H_{1}^2} = \dfrac{2}{3}\sqrt{5}R_{1}

and the area of the blue triangle A = 1 2 x 1 H 1 = x 1 + 2 S 1 2 R 2 A = \dfrac{1}{2}x_{1}H_{1} = \dfrac{x_{1} + 2S_{1}}{2}R_{2} \implies R 2 = x 1 H 1 x 1 + 2 S 1 = 4 3 ( 1 1 + 5 ) R 1 = 2 3 ϕ R 1 \boxed{R_{2} = \dfrac{x_{1}H_{1}}{x_{1} + 2S_{1}} = \dfrac{4}{3}(\dfrac{1}{1 + \sqrt{5}})R_{1} = \dfrac{2}{3\phi}R_{1}} , where ϕ = 1 + 5 2 \phi = \dfrac{1 + \sqrt{5}}{2} .

H 2 = 4 3 R 2 = 8 9 ϕ R 1 = x 2 H_{2} = \dfrac{4}{3}R_{2} = \dfrac{8}{9\phi}R_{1} = x_{2} and S 2 = 1 2 x 2 + 4 H 2 = 4 9 ϕ 5 R 1 S_{2} = \dfrac{1}{2}\sqrt{x_{2} + 4H_{2}} = \dfrac{4}{9\phi}\sqrt{5}R_{1} \implies

R 3 = x 2 H 2 x 2 + 2 S 2 = 8 9 ϕ 1 ( 1 + 5 ) R 1 = 4 9 ϕ 2 R 1 = ( 2 3 ϕ ) 2 R 1 \boxed{R_{3} = \dfrac{x_{2}H_{2}}{x_{2} + 2S_{2}} = \dfrac{8}{9\phi}\dfrac{1}{(1 + \sqrt{5})}R_{1} = \dfrac{4}{9\phi^2}R_{1} = (\dfrac{2}{3\phi})^2R_{1}}

In General:

R n = ( 2 3 ϕ ) n 1 R 1 \boxed{R_{n} = (\dfrac{2}{3\phi})^{n - 1}R_{1}}

Note: x n = H n = 4 3 ( 2 3 ϕ ) n 1 R 1 x_{n} = H_{n} = \dfrac{4}{3}(\dfrac{2}{3\phi})^{n - 1}R_{1} and S n = 2 3 ( 2 3 ϕ ) n 1 5 R 1 S_{n} = \dfrac{2}{3}(\dfrac{2}{3\phi})^{n - 1}\sqrt{5}R_{1}

V s ( n ) = 4 3 π R n 3 = ( 8 27 ϕ 3 ) n 1 V s ( 1 ) \implies V_{s}(n) = \dfrac{4}{3}\pi R_{n}^3 = (\dfrac{8}{27\phi^3})^{n - 1} * V_{s}(1) T = n = 1 V s ( n ) = \implies T = \sum_{n = 1}^{\infty} V_{s}(n) =

V s ( 1 ) n = 1 ( 8 27 ϕ ) n 1 = V_{s}(1)\sum_{n = 1}^{\infty} (\dfrac{8}{27\phi})^{n - 1} = 27 ϕ 3 27 ϕ 3 8 V s ( 1 ) = ( 3 ϕ ) 3 ( 3 ϕ ) 3 2 3 V s ( 1 ) \dfrac{27\phi^3}{27\phi^3 - 8}V_{s}(1) = \dfrac{(3\phi)^3}{(3\phi)^3 - 2^3}V_{s}(1) \implies

T V s ( 1 ) = ( 3 ϕ ) 3 ( 3 ϕ ) 3 2 3 = ( a ϕ ) a ( a ϕ ) a b a \dfrac{T}{V_{s}(1)} = \dfrac{(3\phi)^3}{(3\phi)^3 - 2^3} = \dfrac{(a\phi)^a}{(a\phi)^a - b^a} a + b = 5 \implies a + b = \boxed{5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...