Nested Square Pyramids and Spheres.

Level 2

For each positive integer n n ,

Let V p ( n ) V_{p}(n) be the volume of the largest square pyramid inscribed in a sphere of volume V s ( n ) V_{s}(n)

and

Let V s ( n + 1 ) V_{s}(n + 1) be the volume of the largest sphere inscribed in the square pyramid of volume V p ( n ) V_{p}(n) which is tangent to the faces of the square pyramid.

Let V s = n = 1 V s ( n ) V_{s} = \sum_{n = 1}^{\infty} V_{s}(n) and V p = n = 1 V p ( n ) V_{p} = \sum_{n = 1}^{\infty} V_{p}(n) and ϕ = 1 + 5 2 \phi = \dfrac{1 + \sqrt{5}}{2} is the golden ratio.

If V s V p V s ( 1 ) 2 = ( ( a ϕ ) a ( a ϕ ) a b a ) b ( b 4 a a π ) \dfrac{V_{s} * V_{p}}{V_{s}(1)^2} = (\dfrac{(a\phi)^a}{(a\phi)^a - b^a})^b (\dfrac{b^4}{a^a\pi}) , where a a and b b are coprime positive integers,find a + b a + b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 22, 2019

V s ( 1 ) = 4 3 π R 1 3 V_{s}(1) = \dfrac{4}{3}\pi R_{1}^3 and V p ( 1 ) = 1 3 x 1 2 H 1 V_{p}(1) = \dfrac{1}{3}x_{1}^2H_{1}

R 1 2 = x 1 2 2 + H 1 2 2 H 1 R 1 + R 1 2 x 1 2 = 4 H 1 R 1 2 H 1 2 R_{1}^2 = \dfrac{x_{1}^2}{\sqrt{2}} + H_{1}^2 - 2H_{1}R_{1} + R_{1}^2 \implies x_{1}^2 = 4H_{1}R_{1} - 2H_{1}^2

V p ( 1 ) = 1 3 ( 4 H 1 2 R 1 2 H 1 3 ) d V 1 d H 1 = 2 H 1 3 ( 4 R 1 3 H 1 ) = 0 H 1 0 H 1 = 4 R 1 3 x 1 = 4 R 1 3 \implies V_{p}(1) = \dfrac{1}{3}(4H_{1}^2R_{1} - 2H_{1}^3) \implies \dfrac{dV_{1}}{dH_{1}} = \dfrac{2H_{1}}{3}(4R_{1} - 3H_{1}) = 0 \:\ H_{1} \neq 0 \implies H_{1} = \dfrac{4R_{1}}{3} \implies x_{1} = \dfrac{4R_{1}}{3}

Using x 1 = 4 R 1 3 = H 1 x_{1} = \dfrac{4R_{1}}{3} = H_{1} above s = 2 3 R 1 5 \implies s = \dfrac{2}{3}R_{1}\sqrt{5} and area of the isosceles triangle above with base x 1 x_{1} and congruent sides s s is A = 1 2 x 1 H 1 = 1 2 x 1 R 2 + s R 2 = ( x 1 + 2 s 2 ) R 2 R 2 = x 1 H 1 x 1 + 2 s = 4 3 ( 1 1 + 5 ) R 1 A = \dfrac{1}{2}x_{1}H_{1} = \dfrac{1}{2}x_{1}R_{2} + sR_{2} = (\dfrac{x_{1} + 2s}{2})R_{2} \implies R_{2} = \dfrac{x_{1}H_{1}}{x_{1} + 2s} = \dfrac{4}{3}(\dfrac{1}{1 + \sqrt{5}})R_{1}

and

x 2 = H 2 = 4 3 R 2 = 4 3 ( 4 3 ( 1 + 5 ) ) R 1 x_{2} = H_{2} = \dfrac{4}{3}R_{2} = \dfrac{4}{3}(\dfrac{4}{3(1 + \sqrt{5})})R_{1}
R 3 = 4 3 ( 1 1 + 5 ) R 2 = ( 4 3 ( 1 + 5 ) ) 2 R 1 R_{3} = \dfrac{4}{3}(\dfrac{1}{1 + \sqrt{5}})R_{2} = (\dfrac{4}{3(1 + \sqrt{5})})^2R_{1} and x 3 = H 3 = 4 3 R 3 = 4 3 ( 4 3 ( 1 + 5 ) ) 2 R 1 x_{3} = H_{3} = \dfrac{4}{3}R_{3} = \dfrac{4}{3} (\dfrac{4}{3(1 + \sqrt{5})})^2R_{1} and R 4 = ( 4 3 ( 1 + 5 ) 3 R 1 R_{4} = (\dfrac{4}{3(1 + \sqrt{5}})^3R_{1}

In General:

R n = ( 4 3 ( 1 + 5 ) ) n 1 R 1 R_{n} = (\dfrac{4}{3(1 + \sqrt{5})})^{n - 1} R_{1} and x n = H n = 4 3 ( 4 3 ( 1 + 5 ) ) n 1 R 1 x_{n} = H_{n} = \dfrac{4}{3}(\dfrac{4}{3(1 + \sqrt{5})})^{n - 1}R_{1}

Using ϕ = 1 + 5 2 \phi = \dfrac{1 + \sqrt{5}}{2} \implies

R n = ( 2 3 ϕ ) n 1 R 1 R_{n} = (\dfrac{2}{3\phi})^{n - 1}R_{1} and x n = H n = 4 3 ( 2 3 ϕ ) n 1 R 1 x_{n} = H_{n} = \dfrac{4}{3}(\dfrac{2}{3\phi})^{n - 1}R_{1}

V s ( n ) = 4 3 π R n 3 = ( 8 27 ϕ ) n 1 V s ( 1 ) \implies V_{s}(n) = \dfrac{4}{3}\pi R_{n}^3 = (\dfrac{8}{27\phi})^{n - 1}V_{s}(1) and V p ( n ) = 1 3 x n 2 H n = 16 27 π ( 8 27 ϕ ) n 1 V s ( 1 ) V_{p}(n) = \dfrac{1}{3}x_{n}^2H_{n} = \dfrac{16}{27\pi}(\dfrac{8}{27\phi})^{n - 1}V_{s}(1)

and

n = 1 ( 8 27 ϕ 3 ) n 1 = 27 ϕ 3 27 ϕ 3 8 \sum_{n = 1}^{\infty} (\dfrac{8}{27\phi^3})^{n - 1} = \dfrac{27\phi^3}{27\phi^3 - 8}

\implies

V s = n = 1 V s ( n ) = ( 3 ϕ ) 3 ( 3 ϕ ) 3 8 V s ( 1 ) V_{s} = \sum_{n = 1}^{\infty} V_{s}(n) = \dfrac{(3\phi)^3}{(3\phi)^3 - 8}V_{s}(1) and V p = n = 1 V p ( n ) = 16 27 π ( ( 3 ϕ ) 3 ( 3 ϕ ) 3 8 ) V s ( 1 ) V_{p} = \sum_{n = 1}^{\infty} V_{p}(n) = \dfrac{16}{27\pi}(\dfrac{(3\phi)^3}{(3\phi)^3 - 8})V_{s}(1)

V s V p V s ( 1 ) 2 = 16 27 π ( ( 3 ϕ ) 3 ( 3 ϕ ) 3 8 ) 2 = ( ( 3 ϕ ) 3 ( 3 ϕ ) 3 2 3 ) 2 ( 2 4 3 3 π ) = ( ( a ϕ ) a ( a ϕ ) a b a ) b ( b 4 a a π ) a + b = 5 \implies \dfrac{V_{s} * V_{p}}{V_{s}(1)^2} = \dfrac{16}{27\pi}(\dfrac{(3\phi)^3}{(3\phi)^3 - 8})^2 = (\dfrac{(3\phi)^3}{(3\phi)^3 - 2^3})^2(\dfrac{2^4}{3^3\pi}) = (\dfrac{(a\phi)^a}{(a\phi)^a - b^a})^b (\dfrac{b^4}{a^a\pi}) \implies a + b = \boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...