Nested Square Root Integral

Calculus Level 4

0 1 x 2 + x 2 + x 2 + x 2 . . . d x \int_{0}^{1} \sqrt{x^2+\sqrt{x^2+\sqrt{x^2+\sqrt{x^2...}}}} dx

Can be written in the form arsinh ( a ) + b c + d e \frac{ \text{arsinh}(a)+b\sqrt{c} + d}{e} , where a , b , c , d , e a,b,c,d,e are positive integers with c c being square free.

What is the value of a × b × c × d × e ? a\times b\times c\times d\times e?


The answer is 640.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Feb 12, 2020

If y = x 2 + x 2 + x 2 + x 2 . . . y = \sqrt{x^2 + \sqrt{x^2 + \sqrt{x^2 + \sqrt{x^2...}}}} , then y = x 2 + y y = \sqrt{x^2 + y} , which rearranges to y 2 y x 2 = 0 y^2 - y - x^2 = 0 , which by the quadratic equation solves to y = 1 + 1 + 4 x 2 2 y = \frac{1 + \sqrt{1 + 4x^2}}{2} for x > 0 x > 0 . Therefore, y = x 2 + x 2 + x 2 + x 2 . . . = 1 + 1 + 4 x 2 2 y = \sqrt{x^2 + \sqrt{x^2 + \sqrt{x^2 + \sqrt{x^2...}}}} = \frac{1 + \sqrt{1 + 4x^2}}{2} and

0 1 x 2 + x 2 + x 2 + x 2 . . . d x \int_{0}^{1} \sqrt{x^2 + \sqrt{x^2 + \sqrt{x^2 + \sqrt{x^2...}}}} dx

= lim t 0 + t 1 1 + 1 + 4 x 2 2 d x = \displaystyle \lim_{t\to 0^+} \int_{t}^{1} \frac{1 + \sqrt{1 + 4x^2}}{2} dx

= 1 2 lim t 0 + t 1 ( 4 x 2 + 1 + 1 ) d x = \frac{1}{2} \displaystyle \lim_{t\to 0^+} \int_{t}^{1} (\sqrt{4x^2 + 1} + 1) dx

= 1 2 [ arsinh ( 2 x ) 4 + x 4 x 2 + 1 2 + x ] 0 + 1 = \frac{1}{2}[\frac{\text{arsinh}(2x)}{4} + \frac{x\sqrt{4x^2 + 1}}{2} + x]_{0^+}^1

= 1 2 [ arsinh ( 2 ) 4 + 5 2 + 1 ] = \frac{1}{2}[\frac{\text{arsinh}(2)}{4} + \frac{\sqrt{5}}{2} + 1]

= arsinh ( 2 ) + 2 5 + 4 8 = \frac{\text{arsinh}(2) + 2\sqrt{5} + 4}{8}

Therefore, a = 2 a = 2 , b = 2 b = 2 , c = 5 c = 5 , d = 4 d = 4 , e = 8 e = 8 , and a × b × c × d × e = 640 a \times b \times c \times d \times e = \boxed{640} .

While simplifying the square root the you found is wrong as if you put x=0 if gives different value

Ajay Anand Dwivedi - 1 year, 3 months ago

Log in to reply

You're right! I didn't notice that. The equation holds for x > 0, so a limit can be used in the integral. I edited my solution.

David Vreken - 1 year, 3 months ago

You should have chosen the negative branch of the square root and that way solve that problem.

Henri Kärpijoki - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...