Nested Square Roots within Integral

Calculus Level 3

0 1 x x 2 x 3 x 4 x 5 . . . d x = ? \int_{0}^{1} x\sqrt{x^2\sqrt{x^3\sqrt{x^4\sqrt{x^5...}}}} dx = ?


The answer is 0.2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Elijah L
Feb 8, 2020

Let's "pull out" all the x x 's:

= x ( 1 2 3 . . . ) = x^{\left(1\sqrt{2 \sqrt{3 \sqrt{...}}}\right)}

= x ( 1 2 0 + 2 2 1 + 3 2 2 + . . . ) = x^{\left(\frac{1}{2^0} + \frac{2}{2^1} + \frac{3}{2^2} + ...\right)}

Now, let's concentrate on finding the sum of the series. The sum can be represented in a form as follows:

1 2 0 + 2 2 1 + 3 2 2 + . . . + 2 2 1 + 3 2 2 + . . . + 3 2 2 + . . . \frac{1}{2^0} + \frac{2}{2^1} + \frac{3}{2^2} + ... + \frac{2}{2^1} + \frac{3}{2^2} + ... + \frac{3}{2^2}+...

Now, the sequence is represented as a sum of infinite geometric series. Summing them up, using the rule that S = a 1 r S_\infty = \frac{a}{1-r} :

= 2 + 1 + 1 2 + . . . = 2 + 1 + \frac{1}{2} + ...

= 4 = 4 .

Now, this is also an infinite geometric series, and its sum is 4. Substituting that value back into the original question:

= 0 1 x 4 d x =\displaystyle \int_0^1 x^4 dx

= 1 5 x 5 0 1 = \frac{1}{5} x^5 \Big|_0^1

= 0.2 = \boxed{0.2}

Note that x x 2 x 3 x 4 x 5 = x ( x 2 ( x 3 ( x 4 ( x 5 ( ) ) 1 2 ) 1 2 ) 1 2 ) 1 2 = x x 2 2 x 3 4 x 4 8 x 5 16 = x 1 + 2 2 + 3 4 + 4 8 + 5 16 + = x 4 \displaystyle x\sqrt{x^2\sqrt{x^3\sqrt{x^4\sqrt{x^5 \cdots}}}} = x \left(x^2 \left(x^3 \left(x^4 \left(x^5 (\cdots) \right)^\frac 12\right)^\frac 12 \right)^\frac 12 \right)^\frac 12 = x \cdot x^\frac 22 \cdot x^\frac 34 \cdot x^\frac 48 \cdot x^\frac 5{16} \cdots = x^{1+\frac 22 + \frac 34 + \frac 48 + \frac 5{16}+\cdots} = x^4 (see note).

Therefore, 0 1 x x 2 x 3 x 4 x 5 d x = 0 1 x 4 d x = x 5 5 0 1 = 1 5 = 0.2 \displaystyle \int_0^1 x\sqrt{x^2\sqrt{x^3\sqrt{x^4\sqrt{x^5 \cdots}}}} dx = \int_0^1 x^4 \ dx = \frac {x^5}5 \bigg|_0^1 = \frac 15 = \boxed{0.2} .


Note: For x < 1 |x| < 1 ,

1 1 x = 1 + x + x 2 + x 3 + x 4 + x 5 + Differentiate both sides w.r.t x 1 ( 1 x ) 2 = 1 + 2 x + 3 x 2 + 4 x 3 + 5 x 4 + Replace x with 1 2 4 = 1 + 2 2 + 3 4 + 4 8 + 5 16 + \begin{aligned} \frac 1{1-x} & = 1 + x + x^2 + x^3 + x^4 + x^5 + \cdots & \small \blue{\text{Differentiate both sides w.r.t }x} \\ \frac 1{(1-x)^2} & = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + \cdots & \small \blue{\text{Replace }x \text{ with }\frac 12} \\ 4 & = 1+\frac 22 + \frac 34 + \frac 48 + \frac 5{16}+\cdots \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...